Section 3.8 Higher derivatives

$$
\begin{gathered}
\frac{d^{2} f}{d x^{2}}=f^{\prime \prime}(x)=\left[f^{\prime}(x)\right]^{\prime} \\
\frac{d^{3} f}{d x^{3}}=f^{\prime \prime \prime}(x)=\left[f^{\prime \prime}(x)\right]^{\prime} \\
\frac{d^{n} f}{d x^{n}}=f^{(n)}(x)=\left[f^{(n-1)}(x)\right]^{\prime}
\end{gathered}
$$

Example 1. Find $f^{\prime \prime}(x)$ for the function $f(x)=\tan ^{3}(2 x-1)$.

Example 2. Find $\frac{d^{3}}{d x^{3}}\left(\frac{1-x}{1+x}\right)$

Example 3. Find a formula for $f^{(n)}(x)$ for the following functions:
(a.) $f(x)=x^{4}-3 x^{3}+16 x$
(b.) $f(x)=\sqrt{x}$
(c.) $f(x)=x^{n}$
(c.) $f(x)=\frac{1}{(1-x)^{2}}$

Example 4. Find $f^{(25)}(x)$ if $f(x)=x \sin x$.

Acceleration.

Let $s=s(t)$ be the position function of an object that moves in a straight line.
The instantaneous rate of change of velocity with respect to time is called acceleration $a(t)$ of the object. Thus, the acceleration function is the derivative of the velocity function. Therefore

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t) .
$$

Example 5. The equation of motion of a particle is $s(t)=2 t^{3}-7 t^{2}+4 t+1$, where s is measured in meters and t in seconds. Find the acceleration as a function of time. What is acceleration after 1 s ?

For the vector function $\vec{r}(t)=<x(t), y(t)>$

$$
\begin{gathered}
\vec{r}^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t)> \\
\vec{r}^{\prime \prime}(t)=\left[\vec{r}^{\prime}(t)\right]^{\prime}=<x^{\prime \prime}(t), y^{\prime \prime}(t)>
\end{gathered}
$$

If $\vec{r}(t)=<x(t), y(t)>$ represents the position of an object then the acceleration vector is

$$
\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)=<x^{\prime \prime}(t), y^{\prime \prime}(t)>
$$

Example 5. Find the acceleration at $t=2$ if $\vec{r}(t)=\sqrt{t^{2}+5} \vec{\imath}+t \vec{\jmath}$.

Implicit second derivative.
Example 6. Find $\frac{d^{2} y}{d x^{2}}$ if $x^{2}+6 x y+y^{2}=8$.

