Definition. A function f with domain A is called **one-to-one function** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Horizontal line test. A function is one-to-one if and only if no horizontal line intersects its graph more that once.

Example 1. Determine which of the following functions is one-to-one:

1.
$$f(x) = x + 5$$

2.
$$g(x) = x^2 - 2x + 5$$

3. $h(x) = x^3 - 1$

4.
$$p(x) = x^4 + 5$$

Definition. Let f be one-to-one function with domain A and range B. Then its **inverse** function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \Longleftrightarrow f(x) = y$$

for any y in B.

domain of
$$f^{-1}$$
 = range of f
range of f^{-1} = domain of f

Let f be one-to-one function with domain A and range B. If f(a) = b, then $f^{-1}(b) = a$.

Cancellation equations

$$f^{-1}(f(x)) = x$$
 for every $x \in A$
 $f(f^{-1}(x)) = x$ for every $x \in B$

How to find the inverse function of a one-to-one function f

- 1. Write y = f(x)
- 2. Solve this equation for x in terms of y.
- 3. Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

The graph of f^{-1} is obtained by the reflecting the graph f about the line y = x.

Example 2. Show that the function $f(x) = \frac{1+3x}{5-2x}$ is one-to-one and find $f^{-1}(y)$.

Theorem. If f is a one-to-one continuous function defined on an interval, then its inverse function f^{-1} is also continuous.

Theorem. If f is a one-to-one differentiable function with inverse function $g = f^{-1}$ and $f'(g(a)) \neq 0$, then the inverse function is differentiable at a and

$$g'(a) = \frac{1}{f'(g(a))}$$

Example 3. Find g'(4), where g is the inverse function of the function $f(x) = 3 + x + e^x$.