Definition. A function f with domain A is called one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Horizontal line test. A function is one-to-one if and only if no horizontal line intersects its graph more that once.

Example 1. Determine which of the following functions is one-to-one:

1. $f(x)=x+5$
2. $g(x)=x^{2}-2 x+5$
3. $h(x)=x^{3}-1$
4. $p(x)=x^{4}+5$

Definition. Let f be one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \Longleftrightarrow f(x)=y
$$

for any y in B.

$$
\begin{aligned}
& \text { domain of } f^{-1}=\text { range of } f \\
& \text { range of } f^{-1}=\text { domain of } f
\end{aligned}
$$

Let f be one-to-one function with domain A and range B. If $f(a)=b$, then $f^{-1}(b)=a$.

Cancellation equations

$$
\begin{aligned}
& f^{-1}(f(x))=x \text { for every } x \in A \\
& f\left(f^{-1}(x)\right)=x \text { for every } x \in B
\end{aligned}
$$

How to find the inverse function of a one-to-one function f

1. Write $y=f(x)$
2. Solve this equation for x in terms of y.
3. Interchange x and y. The resulting equation is $y=f^{-1}(x)$.

The graph of f^{-1} is obtained by the reflecting the graph f about the line $y=x$.
Example 2. Show that the function $f(x)=\frac{1+3 x}{5-2 x}$ is one-to-one and find $f^{-1}(y)$.

Theorem. If f is a one-to-one continuous function defined on an interval, then its inverse function f^{-1} is also continuous.

Theorem. If f is a one-to-one differentiable function with inverse function $g=f^{-1}$ and $f^{\prime}(g(a)) \neq 0$, then the inverse function is differentiable at a and

$$
g^{\prime}(a)=\frac{1}{f^{\prime}(g(a))}
$$

Example 3. Find $g^{\prime}(4)$, where g is the inverse function of the function $f(x)=3+x+\mathrm{e}^{x}$.

