L'Hospital's Rule Suppose f and g are differentiable and $g'(x) \neq 0$ for points close to a (except, possibly a). Suppose that

 $\lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0 \text{ or } \lim_{x \to a} f(x) = \infty \text{ and } \lim_{x \to a} g(x) = \infty. \text{ Then}$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left| \frac{0}{0} \text{ or } \frac{\infty}{\infty} \right| = \lim_{x \to a} \frac{f(x)}{g'(x)}$$

Example 1. Evaluate $\lim_{x\to 0} \frac{x\cos x - \sin x}{x^3}$

Indeterminate products If $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = 0$ or $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$, then

$$\lim_{x \to a} f(x)g(x) = |\infty \cdot 0| = \lim_{x \to a} \frac{f(x)}{1/g(x)} = \lim_{x \to a} \frac{g(x)}{1/f(x)} = \left| \frac{0}{0} \text{ or } \frac{\infty}{\infty} \right|$$

and now we can use L'Hospital's Rule.

Example 2. Evaluate $\lim_{x \to 1} (1-x) \tan \frac{\pi x}{2}$

Indeterminate differences If we have to find $\lim_{x\to a} (f(x) - g(x)) = |\infty - \infty|$ $(\lim_{x\to a} f(x) = \infty, \lim_{x\to a} g(x) = \infty)$, then we have to convert the difference into a quotient (by using a common denominator or rationalization, or factoring out a common factor) so that we have an indeterminate form of type $\left|\frac{0}{0} \text{ or } \frac{\infty}{\infty}\right|$ and we can use L'Hospital's Rule.

Example 3. Evaluate $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$

Indeterminate powers $\lim_{x\to a} [f(x)]^{g(x)} = |0^0 \text{ or } \infty^0 \text{ or } 1^\infty| = \lim_{x\to a} e^{g(x) \ln f(x)} = e^{\lim_{x\to a} [g(x) \ln f(x)]}$. Now let's find

$$\begin{split} &\lim_{x \to a} [g(x) \ln f(x)] = |0 \cdot \infty| = \lim_{x \to a} \frac{\ln f(x)}{\frac{1}{g(x)}} = \left| \frac{0}{0} \text{ or } \frac{\infty}{\infty} \right| = b \\ &\text{Then} \\ &\lim_{x \to a} [f(x)]^{g(x)} = e^b \end{split}$$

Example 4. Evaluate $\lim_{x\to 0} (1+x^2)^{\frac{1}{x}}$.