Chapter 5. Applications of differentiation

Section 5.1 What does f^{\prime} say about f ?

- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval
- f has a local maximum at the point, where its derivative changes from positive to negative.
- f has a local minimum at the point, where its derivative changes from negative to positive.

Example 1. Given the graph of the function f.

(a.) What are the x-coordinate(s) of the points where $f^{\prime}(x)$ does not exist?
(b.) Identify intervals on which $f(x)$ is increasing.

Is decreasing.
(c.) Identify the x coordinates of the points where $f(x)$ has a local maximum.

A local minimum.

What does $f^{\prime \prime}$ say about f ?

- If $f^{\prime \prime}(x)>0$ on an interval, then f is concave upward (CU) on that interval
- If $f^{\prime \prime}(x)<0$ on an interval, then f is concave downward (CD) on that interval

Definition. A point where curve changes its direction of concavity is called an inflection point

Use the following graph of the derivative, $f^{\prime}(x)$, of the function $y=f(x)$ to answer questions 1-5:
Example 2. Given the graph of $f^{\prime}(x)$.

(a.) Identify intervals on which f is increasing.

Is decreasing.
(b.) Identify the x coordinates of the points where f has a local maximum.

A local minimum.
(c.) Identify intervals on which f is concave upward.

Concave downward.
(d.) Find the x-coordinates of inflection points.

