The mean value theorem If f is a differentiable function on the interval $[a, b]$, then there exist a number $c, a<c<b$, such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text { or } f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Increasing/decreasing test

1. If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
2. If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval

The first derivative test Suppose that c is a critical number of a continuous function f.

1. If f^{\prime} changes from positive to negative at c, then f has a local max at c.
2. If f^{\prime} changes from negative to positive at c, then f has a local min at c.
3. If f^{\prime} does not change sign c, then f has a no local max or min at c.

Definition. A function is called concave upward (CU) on an interval I if f^{\prime} is an increasing function on I. It is called concave downward (CD) on I if f^{\prime} is an decreasing on I.

A point where a curve changes its direction of concavity is called an inflection point.

Concavity test

1. If $f^{\prime \prime}(x)>0$ on an interval, then f is CU on this interval.
2. If $f^{\prime \prime}(x)<0$ on an interval, then f is CD on this interval.

The second derivative test Suppose $f^{\prime \prime}$ is continuous near c.

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local min at c.
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local max at c.

Example 1. Sketch the graph of the function
(a.) $f(x)=\mathrm{e}^{-\frac{1}{x+1}}$
(b.) $f(x)=\frac{x}{(x-1)^{2}}$

