Definition. Function F(x) is called an **antiderivative** of f(x) on an interval I if

$$F'(x) = f(x)$$

for all $x \in I$.

Theorem 1. If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C

where C is a constant.

Table of antidifferentiation formulas

Function	Antiderivative
af(x), a is a constant	aF(x) + C
f(x) + g(x)	F(x) + G(x) + C
a, a is a constant	ax + C
x	$\frac{x^2}{2} + C$
$x^n, n \neq -1$	$\frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}$	$\ln x + C$
e^x	$e^x + C$
a^x	$\frac{a^x}{\ln a} + C$
$\sin x$	$-\cos x + C$
$\cos x$	$\sin x + C$
$\sec^2 x$	$\tan x + C$
$\csc^2 x$	$-\cot x + C$
$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x + C$
$\frac{1}{1+x^2}$	$\tan^{-1} + C$

Example 1. Find the most general antiderivative of the function. (a.) $f(x) = x^3 - 4x^2 + 17$

(b.)
$$f(t) = \sin t - \sqrt{t}$$

(c.)
$$f(x) = (1+x^2)\sqrt[3]{x^2}$$

(d.)
$$f(x) = \frac{x^2 + x + 1}{x}$$

(e.)
$$f(x) = x^e + \frac{5}{1+x^2} - \frac{1}{\sqrt{1-x^2}}$$

Example 2. Find
$$f(x)$$
 if
(a.) $f'(x) = 3\sqrt{x} - \frac{1}{\sqrt{x}}, f(1) = 2$

(b.)
$$f''(x) = x, f(0) = -3, f'(0) = 2$$

The geometry of antiderivatives

Example 3. Given the graph of a function f(x). Make a rough sketch of of an antiderivative of F, given that F(0) = 0.

Example 4. If $f(x) = 1/(x^4 + 1)$, sketch the graph of those antiderivatives F that satisfy the initial conditions F(-1) = 1, F(0) = 0, F(1) = -1.

Rectilinear motion

If the object has a position function s = s(t), then

v(t) = s'(t) (the position function is an antiderivative for the velocity function),

a(t) = v'(t) (the velocity function is an antiderivative to the acceleration function)

Example 5. A particle is moving with the acceleration a(t) = 3t + 8, s(0) = 1, v(0) = -2. Find the position of the particle.

Antiderivatives of vector functions

Definition. A vector function $\vec{R}(t) = \langle X(t), Y(t) \rangle$ is called **an antiderivative** of $\vec{r}(t) = \langle x(t), y(t) \rangle$ on an interval I if $\vec{R'}(t) = \vec{r}(t)$ that is, X'(t) = x(t) and Y'(t) = y(t).

Theorem 2. If \vec{R} is an antiderivative of \vec{r} on an interval *I*, then the most general antiderivative of \vec{r} on *I* is

 $\vec{R} + \vec{C}$

where \vec{C} is an arbitrary constant vector.

Example 6. Find the vector-function that describe the position of particle that has an acceleration $\vec{a}(t) = \cos t\vec{i} + e^t\vec{j}$ and $\vec{v}(0) = \vec{i} + \vec{j}$, $\vec{r}(0) = \vec{0}$.