Problem. Find the area of the region S that lies under the curve $y=f(x)$ from a to b.

$$
S=\{(x, y): a \leq x \leq b, 0 \leq y \leq f(x)\}
$$

We start by subdividing the interval $[a, b]$ into smaller subintervals by choosing partition points $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ so that

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b
$$

Then the n subintervals are

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right] \ldots\left[x_{n-1}, x_{n}\right]
$$

This subdivision is called a partition of $[a, b]$ and we denote it by P. We use the notation Δx_{i} for the length of the i th subinterval $\left[x_{i-1}, x_{i}\right]$.

$$
\Delta x_{i}=x_{i}-x_{i-1}
$$

The length of the longest subinterval is denoted by $\|P\|$ and is called the norm of P.

$$
\|P\|=\max \left\{\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}\right\}
$$

By drawing the lines $x=a, x=x_{1}, \ldots x=b$, we use the partition P to divide the region S into strips $S_{1}, S_{2}, \ldots, S_{n}$.

We choose a number x_{i}^{*} in each subinterval $\left[x_{i-1}, x_{i}\right]$ and construct a rectangle R_{i} with base Δx_{i} and height $f\left(x_{i}^{*}\right)$.

The area of the i th rectangle R_{i} is

$$
A_{i}=f\left(x_{i}^{*}\right) \Delta x_{i}
$$

The n rectangles $R_{1}, R_{2}, \ldots, R_{n}$ form a polygonal approximation to the region S.

$$
A(S) \approx \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

This approximation becomes better and better as the strips become thinner and thinner, that is, as $\|P\| \rightarrow 0$. Then

$$
A=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

Example 1. Determine a region whose area is equal to

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}
$$

DO NOT EVALUATE THE LIMIT.

Example 2. Find the area under the curve $y=1 / x^{2}$ from 1 to 2 . Use four subintervals of equal length and take x_{i}^{*} to be the midpoint of the i th subinterval.

Example 3. Find the area under the curve $y=x^{2}+3 x-2$ from 1 to 4 . Use equal subintervals and take x_{i}^{*} to be the right endpoint of the i th subinterval.

