Section 6.3 The definite integral

Definition of a definite integral.

If f is a function defined on a closed interval $[a, b]$, let P be a partition of $[a, b]$ with partition points $x_{0}, x_{1}, \ldots, x_{n}$, where

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

Choose points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ and let $\Delta x_{i}=x_{i}-x_{i-1}$ and $\|P\|=\max \left\{\Delta x_{i}\right\}$. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

if this limit exists. If the limit does exist, then f is called integrable on the interval $[a, b]$.
In the notation $\int_{a}^{b} f(x) d x, f(x)$ is called the integrand and a and b are called the limits of integration; a is the lower limit and b is the upper limit.

The procedure of calculating an integral is called integration.
For the special case where $f(x) \geq 0, \int_{a}^{b} f(x) d x=$ area under the graph of f from a to b.

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
\int_{a}^{a} f(x) d x=0
\end{gathered}
$$

Example 1. Evaluate $\int_{0}^{7} f(x) d x$ if the graph of the function $f(x)$ is

Theorem 1. If f is continuous on $[a, b]$, then f is integrable on $[a, b]$.
If f has a finite number of discontinuities and these are all jump discontinuities, then f is called piecewise continuous function.

Theorem 2. If f is piecewise continuous on $[a, b]$, then f is integrable on $[a, b]$.
f is integrable on $[a, b]$, then f must be bounded function on $[a, b]$: that is, there exist a number M such that $|f(x)| \leq M$ for all $x \in[a, b]$.

Let P be a regular partition of $[a, b]$: that is $\Delta x=\Delta x_{1}=\Delta x_{2}=\ldots=\Delta x_{n}=\frac{b-a}{n}$ and $x_{0}=a, x_{1}=a+\Delta x, x_{2}=a+2 \Delta x, \ldots, x_{n}=b$

If we choose x_{i}^{*} to be the right endpoint of the i th interval, then $x_{i}^{*}=x_{i}=a+i \Delta x=a+i \frac{b-a}{n}$, so

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)
$$

If x_{i}^{*} is the midpoint of the interval i th interval, then $x_{i}^{*}=\bar{x}_{i}=\left(x_{i-1}+x_{i}\right) / 2$, so

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(\bar{x}_{i}\right)
$$

Example 2. Evaluate the integral $\int_{1}^{4}\left(x^{2}-2\right) d x$

Properties of the definite integral

1. $\int_{a}^{b} c d x=c(b-a)$, where c is a constant.
2. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$, where c is a constant.
3. $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
4. $\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$.
5. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, where $a<c<b$.
6. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$.
7. If $f(x) \geq 0$ for $a<x<b$, then $\int_{a}^{b} f(x) d x \geq 0$.
8. If $f(x) \geq g(x)$ for $a<x<b$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$.
9. If $m \leq f(x) \leq M$ for $a<x<b$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$.
10. $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$

Example 3. Express the limit as a definite integral
(a.) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{5}}$
(b.) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[3\left(1+\frac{2 i}{n}\right)^{5}-6\right] \frac{2}{n}$

Example 4. Write the given sum or difference as a single integral
(a.) $\int_{1}^{3} f(x) d x+\int_{3}^{6} f(x) d x+\int_{6}^{1} 2 f(x) d x$
(b.) $\int_{2}^{10} f(x) d x-\int_{2}^{7} f(x) d x$

