Theorem. Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}$, where F is an antiderivative of f.

Example 1. Find the derivative of the function.

1. $g(x)=\int_{\pi}^{x} \frac{1}{1+t^{4}} d t$
2. $f(x)=\int_{x}^{4}(2+\sqrt{t})^{8} d t$
3. $y=\int_{\tan x}^{17} \sin \left(t^{4}\right) d t$

Example 2. Evaluate the integral.

1. $\int_{2}^{6} \frac{1+\sqrt{y}}{y^{2}} d y$
2. $\int_{0}^{2} f(x) d x$, where $f(x)= \begin{cases}x^{4} & 0 \leq x<1 \\ x^{5} & 1 \leq x \leq 2\end{cases}$

Example 3. A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-2 t-8$.

1. Find the displacement of the particle during the time period $1 \leq t \leq 6$.
2. Find the distance traveled during this time period.
