Math151 Sample Problems for the Final Fall 2011

1. Given vectors $\vec{a}=\vec{\imath}-2 \vec{\jmath}, \vec{b}=<-2,3>$. Find
(a) a unit vector \vec{u} that has the same direction as $2 \vec{b}+\vec{a}$.
(b) angle between \vec{a} and \vec{b}
(c) $\operatorname{comp}_{\vec{b}} \vec{a}, \operatorname{proj}_{\vec{b}} \vec{a}$.
2. Find the work done by by a force of 20 lb acting in the direction $\mathrm{N} 50^{\circ} \mathrm{W}$ in moving an object 4 ft due west.
3. Find the distance from the point $(-2,3)$ to the line $3 x-4 y+5=0$.
4. Find vector and parametric equations for the line passing through the points $A(1,-3)$ and $B(2,1)$.
5. Find all points of discontinuity for the function

$$
f(x)= \begin{cases}x^{2}+1 & , \quad \text { if } x<2 \\ x+2 & , \quad \text { if } x \geq 2\end{cases}
$$

6. Find the vertical and horizontal asymptotes of the curve $y=\frac{x^{2}+4}{3 x^{2}-3}$.
7. Find $\frac{d y}{d x}$ for each function
(a) $y=(\sin x)^{x}$.
(b) $y=\frac{\sqrt[5]{2 x-1}\left(x^{2}-4\right)^{2}}{\sqrt[3]{1+3 x}}$
(c) $y(t)=\sin ^{-1} t, x(t)=\cos ^{-1}\left(t^{2}\right)$.
(d) $2 x^{2}+2 x y+y^{2}=x$.
8. Find the equation of the tangent line to the curve $y=x \sqrt{5-x}$ at the point $(1,2)$.
9. A particle moves on a vertical line so that its coordinate at time t is $y=t^{3}-12 t+3$, $t \geq 0$.
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward?
(c) Find the distance that particle travels in the time interval $0 \leq t \leq 3$
10. The vector function $\vec{r}(t)=<t, 25 t-5 t^{2}>$ represents the position of a particle at time t. Find the velocity, speed, and acceleration at $t=1$.
11. Find $y^{\prime \prime}$ if $y=\mathrm{e}^{-5 x} \cos 3 x$
12. Find $\frac{d^{50}}{d x^{50}} \cos 2 x$
13. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $0.9 \mathrm{ft} / \mathrm{s}$, how fast is the angle between the ladder and the ground changing when the bottom of the ladder is 8 ft from the wall?
14. Find the quadratic approximation of $1 / x$ for x near 4.
15. If $f(x)=x+x^{2}+\mathrm{e}^{x}$ and $g(x)=f^{-1}(x)$, find $g^{\prime}(1)$.
16. Solve the equation $\ln (x+6)+\ln (x-3)=\ln 5+\ln 2$
17. Find $\cos ^{-1}\left(\sin \frac{5 \pi}{4}\right)$.
18. Evaluate each limit:
(a) $\lim _{x \rightarrow 0} \frac{\sin x+\sin 2 x}{\sin 3 x}$
(b) $\lim _{x \rightarrow 0}(\cot x-\csc x)$
(c) $\lim _{x \rightarrow 0} x^{\sin x}$
19. Find the absolute maximum and absolute minimum values of $f(x)=x^{3}-2 x^{2}+x$ on $[-1,1]$.
20. For the function $y=x^{2} e^{x}$ find
(a) All asymptotes.
(b) Intervals on which the function is increasing/decreasing.
(c) All local minima/local maxima.
(d) Intervals on which the function is $\mathrm{CU} / \mathrm{CD}$.
(e) Inflection points.
21. A cylindrical can without a top is made to contain $V \mathrm{~cm}^{3}$ of liquid. Find the dimensions that will minimize the cost of the metal to make the can.
22. Find the derivative of the function $f(x)=\int_{0}^{\sqrt{x}} \frac{t^{2}}{t^{2}+1} d t$
23. Evaluate the integral:
(a) $\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x$
(b) $\int_{1}^{2} \frac{x^{2}+1}{\sqrt{x}} d x$
(c) $\int_{0}^{\pi / 2}(\cos t+2 \sin t) d t$
24. Find the area under the curve $y=\sqrt{x}$ above the x-axis between 0 and 4 .
25. A particle moves in a straight line and has acceleration given by $a(t)=t^{2}-t$. Its initial velocity is $v(0)=2 \mathrm{~cm} / \mathrm{s}$ and its initial displacement is $s(0)=1 \mathrm{~cm}$. Find the position function $s(t)$.
26. Find the vector function $\vec{r}(t)$ that gives the position of a particle at time t having the acceleration $\vec{a}(t)=2 t \vec{\imath}+\vec{\jmath}$, initial velocity $\vec{v}(0)=\vec{\imath}-\vec{\jmath}$, and initial position (1,0).
