- 1. Given vectors $\vec{a} = \vec{i} 2\vec{j}$, $\vec{b} = <-2, 3>$. Find
 - (a) a unit vector \vec{u} that has the same direction as $2\vec{b} + \vec{a}$.
 - (b) angle between \vec{a} and \vec{b}
 - (c) $\operatorname{comp}_{\vec{b}}\vec{a}$, $\operatorname{proj}_{\vec{b}}\vec{a}$.
- 2. Find the work done by by a force of 20 lb acting in the direction N50°W in moving an object 4 ft due west.
- 3. Find the distance from the point (-2,3) to the line 3x 4y + 5 = 0.
- 4. Find vector and parametric equations for the line passing through the points A(1, -3) and B(2, 1).
- 5. Find all points of discontinuity for the function

$$f(x) = \begin{cases} x^2 + 1 & , & \text{if } x < 2, \\ x + 2 & , & \text{if } x \ge 2. \end{cases}$$

6. Find the vertical and horizontal asymptotes of the curve $y = \frac{x^2 + 4}{3x^2 - 3}$.

- 7. Find $\frac{dy}{dx}$ for each function (a) $y = (\sin x)^x$. (b) $y = \frac{\sqrt[5]{2x - 1}(x^2 - 4)^2}{\sqrt[3]{1 + 3x}}$ (c) $y(t) = \sin^{-1} t$, $x(t) = \cos^{-1}(t^2)$. (d) $2x^2 + 2xy + y^2 = x$.
- 8. Find the equation of the tangent line to the curve $y = x\sqrt{5-x}$ at the point (1,2).
- 9. A particle moves on a vertical line so that its coordinate at time t is $y = t^3 12t + 3$, $t \ge 0$.
 - (a) Find the velocity and acceleration functions.
 - (b) When is the particle moving upward?
 - (c) Find the distance that particle travels in the time interval $0 \le t \le 3$
- 10. The vector function $\vec{r}(t) = \langle t, 25t 5t^2 \rangle$ represents the position of a particle at time t. Find the velocity, speed, and acceleration at t = 1.
- 11. Find y'' if $y = e^{-5x} \cos 3x$

12. Find
$$\frac{d^{50}}{dx^{50}}\cos 2x$$

- 13. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 0.9 ft/s, how fast is the angle between the ladder and the ground changing when the bottom of the ladder is 8 ft from the wall?
- 14. Find the quadratic approximation of 1/x for x near 4.
- 15. If $f(x) = x + x^2 + e^x$ and $g(x) = f^{-1}(x)$, find g'(1).
- 16. Solve the equation $\ln(x+6) + \ln(x-3) = \ln 5 + \ln 2$

17. Find
$$\cos^{-1}\left(\sin\frac{5\pi}{4}\right)$$
.

18. Evaluate each limit:

(a)
$$\lim_{x \to 0} \frac{\sin x + \sin 2x}{\sin 3x}$$

(b)
$$\lim_{x \to 0} (\cot x - \csc x)$$

(c)
$$\lim_{x \to 0} x^{\sin x}$$

- 19. Find the absolute maximum and absolute minimum values of $f(x) = x^3 2x^2 + x$ on [-1,1].
- 20. For the function $y = x^2 e^x$ find
 - (a) All asymptotes.
 - (b) Intervals on which the function is increasing/decreasing.
 - (c) All local minima/local maxima.
 - (d) Intervals on which the function is CU/CD.
 - (e) Inflection points.
- 21. A cylindrical can without a top is made to contain $V \text{ cm}^3$ of liquid. Find the dimensions that will minimize the cost of the metal to make the can.
- 22. Find the derivative of the function $f(x) = \int_{0}^{\sqrt{x}} \frac{t^2}{t^2 + 1} dt$
- 23. Evaluate the integral:

(a)
$$\int_{1}^{2} \left(x + \frac{1}{x}\right)^{2} dx$$

(b) $\int_{1}^{2} \frac{x^{2} + 1}{\sqrt{x}} dx$
(c) $\int_{0}^{\pi/2} (\cos t + 2\sin t) dt$

24. Find the area under the curve $y = \sqrt{x}$ above the x-axis between 0 and 4.

- 25. A particle moves in a straight line and has acceleration given by $a(t) = t^2 t$. Its initial velocity is v(0) = 2 cm/s and its initial displacement is s(0) = 1 cm. Find the position function s(t).
- 26. Find the vector function $\vec{r}(t)$ that gives the position of a particle at time t having the acceleration $\vec{a}(t) = 2t\vec{i} + \vec{j}$, initial velocity $\vec{v}(0) = \vec{i} \vec{j}$, and initial position (1, 0).