1. Below is the graph of $f^{\prime}(x)$, the derivative of $f(x)$. At what value(s) of x does $f(x)$ attain a local minimum?

(a) $x=-\frac{1}{2}$
(b) $x=2$
(c) $x=-3$ and $x=2$
(d) $x=-\frac{1}{2}$ and $x=2$
(e) $x=-3$
2. $\lim _{x \rightarrow 3^{+}} \ln \left(\frac{x-3}{x}\right)=\lim _{y \rightarrow 0^{+}} \ln y=-\infty$
(a) 1

$$
\lim _{x \rightarrow 3^{+}} \frac{x-3}{x}=\frac{3-3}{3}=0
$$

(b) 0
(c) ∞
(d) e
(e) $-\infty$
3. Find all critical numbers for $f(x)=\sin ^{2} x+\cos x, 0<x<2 \pi$.
(a) $x=\pi, x=\frac{\pi}{3}, x=\frac{5 \pi}{3}$
(b) $x=\frac{\pi}{3}, x=\frac{5 \pi}{3}$
(c) $x=\pi, x=\frac{2 \pi}{3}, x=\frac{4 \pi}{3}$
(d) $x=\frac{2 \pi}{3}, x=\frac{4 \pi}{3}$
(e) $x=\pi, x=\frac{\pi}{6}, x=\frac{11 \pi}{6}$

$$
f^{\prime}(x)=2 \sin x \cos x-\sin x=0
$$

$$
\sin x(2 \cos x-1)=0
$$

$$
\sin x=0 \quad \text { or } \cos x=\frac{1}{2}
$$

$$
x=\pi
$$

$$
x=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}
$$

4. The number of bacteria in a culture is increasing according to the Law of Exponential Growth. If there are in itially 125 bacteria in the culture and there are 350 bacteria after 2 hours, how many bacteria are present after 24 pours?
(a) $125\left(\frac{5}{14}\right)^{12}$
$p(t)$ population after t hours
$p(t)=p(0) e^{k t}$
(b) $125\left(\frac{14}{5}\right)^{24}$ $p(0)=125, p(2)=350$, Find $p(24)$.
(c) $\frac{125}{2}\left(\frac{14}{5}\right)^{24}$
$p(t)=125 e^{k t}$
$\begin{aligned} p(2)=125 e^{2 t} & =350 \\ e^{2 t} & =\frac{350}{125}=\frac{7.50}{5 \cdot 25}=\frac{70}{25}=\frac{14}{5}\end{aligned}$
(d) $25\left(\frac{14}{5}\right)^{12}$
$2 k=\ln \frac{14}{5}, \quad k=\frac{1}{2} \ln \frac{14}{5}$
(e) $\frac{125}{2}\left(\frac{5}{14}\right)^{12}$

$$
\begin{gathered}
P(t)=(125) e^{\frac{t}{2} \ln \frac{14}{5}}=(125)\left(\frac{14}{5}\right)^{t / 2} \\
P(24) f(125)\left(\frac{14}{5}\right)^{12}
\end{gathered}
$$

(a) $m=-\pi-\frac{3}{\sqrt{3}}$

$$
f^{\prime}(x)=3 \arcsin x+\frac{3 x}{\sqrt{1-x^{2}}}
$$

(b) $m=-\frac{\pi}{2}-\frac{3}{\sqrt{3}}$
(c) $m=-\frac{\pi}{2}-\frac{3}{\sqrt{5}}$

$$
\begin{aligned}
f^{\prime}\left(-\frac{1}{2}\right) & =3 \arcsin \left(-\frac{1}{2}\right)+\frac{3(-1 / 2)}{\sqrt{1-\left(-\frac{1}{2}\right)^{2}}} \\
& =3\left(-\frac{\pi}{6}\right)+\frac{-3 / 2}{\sqrt{3 / 4}}=-\frac{\pi}{2}-\frac{3}{\sqrt{3}}
\end{aligned}
$$

(d) $m=\frac{7 \pi}{2}-\frac{3}{\sqrt{3}}$
(e) $m=-\pi-\frac{3}{\sqrt{5}}$
6. Which of the following is equivalent to $\left(2 \ln \left(x^{2}+3\right)-\ln (x)-\frac{1}{2} \ln \left(x^{2}+1\right)\right.$?
(a) $\ln \left(\frac{\left(x^{2}+3\right)^{2}}{x \sqrt{x^{2}+1}}\right)$
$=\ln \left(x^{2}+3\right)^{2}-\ln x-\ln \left(x^{2}+1\right)^{1 / 2}$
(b) $\ln \left(\frac{\left(x^{2}+3\right)^{2} \sqrt{x^{2}+1}}{x}\right)$

$$
=\sqrt{\ln \frac{\left(x^{2}+3\right)^{2}}{x \sqrt{x^{2}+1}}}
$$

(c) $\ln \left(\frac{x\left(x^{2}+3\right)^{2}}{\sqrt{x^{2}+1}}\right)$
(d) $\ln \left(\frac{4\left(x^{2}+3\right)}{x\left(x^{2}+1\right)}\right)$
(e) $\frac{\ln \left(x^{2}+3\right)^{2}}{\ln x \sqrt{x^{2}+1}}$
7. $\lim _{x \rightarrow 0} \frac{\arctan (2 x)}{3 x}=\frac{0}{0}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+(2 x)^{2}}(2)}{3}=\frac{2}{3}$
(a) 0
(b) 1
(c) $\frac{2}{3}$
(d) 6
(e) $\frac{1}{3}$

8. Find the absolute extrema for $f(x)=3 x-x^{3}$ on $[0,3]$,

(a) Absolute maximum is 2 , Absolute minimum is -18
(b) Absolute maximum is 0 , Absolute minimum is -18
(c) Absolute maximum is 2, Absolute minimum is -2
(d) Absolute maximum is 2, Absolute minimum is 0
(e) Absolute maximum is 4, Absolute minimum is -2

$$
f^{\prime}(x)=3-3 x^{2}=0
$$

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=3-1=2 \text { abs max } \\
& f(3)=3(3)-3^{3}=9-27=-18 \text { abs m in }
\end{aligned}
$$

9. Find $f^{\prime}(x)$ for $f(x)=x^{\ln x}$.
(a) $f^{\prime}(x)=x^{\ln x}\left(\frac{2 \ln x}{x}\right)$

$$
\ln f=\ln \left(x^{\ln x}\right)
$$

$$
=\ln x(\ln x)
$$

$$
\ln f=(\ln x)^{2}
$$

(b) $f^{\prime}(x)=x^{\ln x}\left(\frac{\ln x}{x}\right)^{2}$

$$
\frac{f^{\prime}}{f}=2 \ln x \frac{1}{x}
$$

(c) $f^{\prime}(x)=x^{\ln x}\left(\frac{1}{x^{2}}\right)$

$$
f^{\prime}=f \cdot \frac{2 \ln x}{x}
$$

(d) $f^{\prime}(x)=\frac{2 \ln x}{x}$

$$
=x^{\ln x} \cdot \frac{2 \ln x}{x}
$$

(e) $f^{\prime}(x)=\ln x\left(x^{\ln x-1}\right)$
10. Which of the following is equivalent to $\sec (\arctan x) ?=\frac{1}{\cos (\arctan x)}=$
(a) $\frac{1}{\sqrt{x^{2}-1}} \quad y=\arctan x \Leftrightarrow x=\tan y$
(b) $\sqrt{x^{2}+1}$

(c) $\frac{1}{\sqrt{x^{2}+1}}$

$$
\cos y=\frac{1}{\sqrt{1+x^{2}}}
$$

(d) $\sqrt{x^{2}-1}$
(e) $\frac{x}{\sqrt{x^{2}+1}}$
11. $\arccos \left(\cos \left(\frac{4 \pi}{3}\right)\right)=\arccos \left(-\frac{1}{2}\right)=\pi-\arccos \left(\frac{1}{2}\right)=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
(a) $\frac{4 \pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{\pi}{3}$

(d) $-\frac{\pi}{3}$
(e) $-\frac{4 \pi}{3}$
12. $\sum_{i=1}^{100}\left(2^{i}-2^{i+1}\right)=$
(b) $1-200$
(c) $2-2^{100}$
(d) -2^{101}
(e) $2-2^{101}$
13. Find the equation of the tangent line to the graph of $f(x)=\ln \left(x^{2}\right)$ at $x=e$.
(a) $y-2 e=2 e(x-e)$

$$
f(x)=2 \ln x, \quad f(e)=2
$$

(b) $y-2=\frac{2}{e}(x-e)$
(c) $y-2 e=\frac{2}{e}(x-e)$
(d) $y-2=\frac{1}{e^{2}}(x-e)$
(e) $y-\frac{2}{e}=2 e(x-e)$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2}{x}, f^{\prime}(e)=\frac{2}{e} \\
& y=f^{\prime}(e)(x-e)+f(e)
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{2}{e}(x-e)+2 \\
& y=\frac{2 x}{e}-2+2 \\
& y=\frac{2 x}{e}
\end{aligned}
$$

14. Solve for $x: \quad \ln (x)+\ln (x+1)=\ln (x+4)$

孜 $x=2$ and $x=-2$
(b) $x=3$
(c) $x=3$ and $x=2$
(d) $x=4$
(e) $x=2$

Lomain: $\begin{aligned} \frac{x>0}{x+1>0} & \Rightarrow x>-1 \\ x+4>0 & \Rightarrow x>-4\end{aligned}$
$\ln x(x+1)=\ln (x+4)$
$x(x+1)=x+4$
$x^{2}+x-x-4=0$
$x^{2}-4=0 \Rightarrow x=2$ and $x=-2$
15. If $f^{\prime}(x)=(x-2)^{3}(4-x)^{5}(x+1)^{2}$, where does $f(x)$ have a local minimum?
(a) $x=4$
(b) $x=-1$
(c) $x=4$ and $x=-1$
(d) $x=2$
(e) $x=-1$ and $x=2$

$$
\begin{aligned}
& -1,\left[\begin{array}{l}
\text { local } \\
\text { local max } \\
\text { nuin }
\end{array} f^{\prime}(x)\right. \\
& f^{\prime}(0)=(-2)^{5}\left(4^{5}\right) /<0 \\
& f^{\prime}(1)=(-1)^{3}\left(3^{5}\right) 2^{2}<0 \\
& f^{\prime}(3)=1^{3} \cdot 1^{5} \cdot 4^{2}>0 \\
& f^{\prime}(5)=3^{3} \cdot(-1)^{5} \cdot 6^{2}<0
\end{aligned}
$$

PAKI 11: Work Out

Directions: Present your solutions in the space provided. Show all your work neatly and concisely and Box your final answer. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
16. Consider $f(x)=(x-2) e^{3 x}$.
(i) (4 pts) Find the intervals where $f(x)$ is increasing and decreasing.

$$
\begin{array}{rlrl}
f^{\prime}(x) & =e^{3 x}+(x-2) 3 e^{3 x} \\
& =e^{3 x}(1+3 x-6) \\
f^{\prime}(x) & =\underbrace{e^{3 x}}_{\substack{\text { always } \\
\text { positive }}}(3 x-5)>0 & & 3 x-5>0 \\
& x>\frac{5}{3}
\end{array}
$$

$$
\begin{array}{r}
f \text { is increasing on }\left(\frac{5}{3}, \infty\right) \\
\text { decreasing on }\left(-\infty, \frac{5}{3}\right)
\end{array}
$$

(ii) (2 pts) Find the local maximum and local minimum of $f(x)$. If none, say NONE.

$$
\begin{gathered}
f\left(\frac{5}{3}\right)=\left(\frac{5}{3}-2\right) e^{3 \frac{5}{3}}=-\frac{1}{3} e^{5} \\
\text { local min }\left(\frac{5}{3},-\frac{1}{3} e^{5}\right) \\
\text { no local max }
\end{gathered}
$$

(iii) (4 pts) Find the intervals where $f(x)$ is concave up and concave down.

$$
\begin{align*}
& f^{\prime}(x)=(3 x-5) e^{3 x} \\
& f^{\prime \prime}(x)\left.=3 e^{3 x}+(3 x-5) / 3\right) e^{3 x} \\
&=3 e^{3 x}(1+3 x-5) \tag{x}\\
&=3 e^{3 x}(3 x-4)>0 \\
& x>4 / 3
\end{aligned} \quad \begin{aligned}
& f \text { is CU on }\left(\frac{4}{3}, \infty\right) \\
& f \text { is CD on }\left(-\infty, \frac{4}{3}\right)
\end{align*}
$$

(iv) (2 pts) Find the inflection points) of $f(x)$. If none, say NONE.

$$
\begin{aligned}
& \text { points) of } f(x) \text {. If none, say NONE. } \\
& \text { in flection point } \quad x=4 / 3 \\
& \qquad(4 / 3)=\left(\frac{4}{3}-2\right) e^{3 \cdot 4 / 3}=-\frac{2}{3} e^{4}
\end{aligned}
$$

17. (10 pts) A rectangle is bounded by the x-axis and the semicircle $f(x)=\sqrt{25-x^{2}}$ as shown below. What length and width should the rectangle have so that its area is a maximum?

2

$$
\begin{aligned}
& \left(\sqrt{25-x^{2}}=\frac{x^{2}}{\sqrt{25 x^{2}}}\right)\left(\sqrt{25-x^{2}}\right) \\
& \begin{array}{l}
25-x^{2}=x^{2} \\
25=2 x^{2} \rightarrow x^{2}=\frac{25}{2}, x=\frac{5}{\sqrt{2}}
\end{array} \\
& \begin{array}{r}
y=\sqrt{25-\frac{25}{2}}=\frac{5}{\sqrt{2}} \\
\text { dimensions: } \quad \frac{10}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \quad(2 x \times y)
\end{array} \\
& \text { Show that } A^{\prime \prime}\left(\frac{5}{\sqrt{2}}\right)<0 \\
& A^{\prime \prime}(x)=2 \frac{1}{2}\left(25-x^{2}\right)^{-1 / 2}\left(25-x^{2}\right)^{\prime}-\frac{4 x \sqrt{25-x^{2}}-2 x^{2} \frac{1}{2}\left(25-x^{2}\right)^{-1 / 2}(-2 x)}{25-x^{2}} \\
& =\frac{(-2 x)}{\sqrt{25-x^{2}}}-\frac{4 x \sqrt{25-x^{2}}+2 x^{3}\left(25-x^{2}\right)^{-1 / 2}}{25-x^{2}} \\
& 丸^{\prime \prime}\left(\frac{5}{\sqrt{2}}\right)=\frac{-2 \cdot \frac{5}{\sqrt{2}}}{\sqrt{25-\frac{25}{2}}}-\frac{4 \frac{5}{\sqrt{2}} \sqrt{25-\frac{25}{2}}+2\left(\frac{5}{\sqrt{2}}\right)^{3}\left(25-\frac{25}{2}\right)^{-1 / 2}}{25-\frac{25}{2}} \\
& =-2-\frac{4 \cdot \frac{25}{2}+2 \cdot \frac{125}{2 \sqrt{2}}\left(\frac{25}{2}\right)^{-1 / 2}}{\frac{25}{2}} \\
& =-2-\frac{\frac{100}{2}+2 \cdot \frac{125}{2 \sqrt{2}} \cdot \frac{\frac{x}{5}}{2}}{\frac{25}{2}} \\
& =-2-\frac{\frac{100}{2}+\frac{125}{5}}{\frac{25}{2}}<0
\end{aligned}
$$

$\left(2^{2}\right)^{3 x}| |^{\infty} \mid=\lim ^{\mid 3 x \ln (1+2 / x)}=e^{\lim _{x \rightarrow \infty} 3 x \ln (1+2 / x)}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} 3 x \ln \left(1+\frac{2}{x}\right)=|\infty \cdot 0| \\
&= 3 \lim _{x \rightarrow \infty} \frac{\ln (1+2 / x)}{1 / x}=\frac{0}{0}=3 \lim _{x \rightarrow \infty} \frac{\frac{1}{1+2 / x}\left(-\frac{2}{x^{2}}\right)}{-1 / x^{2}} \\
&=3 \lim _{x \rightarrow \infty} \frac{-\frac{2}{1+2 / x_{0} 0}}{-1}=3(2)=6 \\
& e^{6}
\end{aligned}
$$

19. (11 pts) Given that $\mathbf{r}^{\prime \prime}(t)=\left\langle e^{t}+t, \cos t-1\right\rangle, \mathbf{r}^{\prime}(0)=\langle 1,-2\rangle$ and $\mathbf{r}(0)=\langle 4,12\rangle$, find $\mathbf{r}(t)$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle e^{t}+\frac{t^{2}}{2}+c_{1}, \sin t-t+c_{2}\right\rangle, \vec{r}(0)=\begin{array}{r}
\left.1+c_{1}, c_{2}\right\rangle=\langle 1,-2\rangle \\
1+c_{1}=1 \Rightarrow c_{1}=0 \\
c_{2}=-2
\end{array} \\
& \left.\vec{r}^{\prime}(t)=\left\langle e^{t}+\frac{t^{2}}{2}\right) \sin t-t-2\right\rangle \\
& \vec{r}(t)=\left\langle e^{t}+\frac{t^{3}}{6}+c_{3},-\cos t-\frac{t^{2}}{2}-2 t+c_{4}\right\rangle \\
& \vec{r}(0)=\left\langle 1+c_{3},-1+c_{4}\right\rangle=\langle 4,12\rangle \\
& 1+c_{3}=4 \Rightarrow \quad c_{3}=3 \\
& -1+c_{4}=12 \Rightarrow c_{4}=13
\end{aligned}
$$

20. Find the derivative of $f(x)$. Do not simplify.
(i) (4 pts) $f(x)=4^{x \tan x}$

$$
\begin{aligned}
(x) & =4^{x \tan x} \\
f^{\prime}(x) & =4^{x \tan x}(x \tan x)^{\prime} \ln 4 \\
& =4^{x \tan x}\left(\tan x+x \sec ^{2} x\right) \ln 4
\end{aligned}
$$

(ii) (4 pts) $f(x)=\arccos \left(x^{2}\right)$

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}}\left(x^{2}\right)^{\prime} \\
& =-\frac{2 x}{\sqrt{1-x^{4}}}
\end{aligned}
$$

$$
\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}
$$

(iii) (3 pts) $f(x)=\log _{3}(\ln x)$

$$
\begin{array}{r}
f^{\prime}(x)=\frac{1}{\ln x \cdot \ln 3}(\ln x)^{\prime} \\
=\frac{1}{x \ln x \cdot \ln 3}
\end{array}
$$

