Appendix D. Trigonometry.

Angles can be measured in degrees or radians. The angle given by a complete revolution contains 360°, or 2π radians.

Example 1.

$$
\begin{gathered}
360^{\circ}=2 \pi \mathrm{rad} \\
1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ} \\
1^{\circ}=\frac{\pi}{180} \mathrm{rad}
\end{gathered}
$$

(a.) Convert 9° to radians.

$$
9^{\circ}=\frac{9 \pi}{180}(\mathrm{rad})=\frac{\pi}{20}(\mathrm{rad})
$$

(b.) Convert $\frac{5 \pi}{12}$ to degrees.

$$
\frac{5 \pi}{12}=\frac{5 \pi}{12}\left(\frac{180}{\pi}\right)^{\circ}=\left(\frac{150}{2}\right)^{\circ}=75^{\circ}
$$

The standard position of an angle occurs when we place its vertex at the origin of a coordinate system and its initial side on the positive x-axis. A positive angle is obtained by rotating the initial side counterclockwise until it coincides with the terminal side.

Negative angles are obtained by clockwise rotation

The trigonometric functions.

$$
\begin{aligned}
\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \cos \theta=\frac{\text { adj }}{\text { hyp }} \\
\tan \theta=\frac{\text { opp }}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{1}{\tan \theta} \\
\frac{1}{\cos \theta}=\sec \theta=\frac{\text { hyp }}{\text { adj }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}=\frac{1}{\sin \theta}
\end{aligned}
$$

Special triangles:

$$
\begin{array}{lll}
\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} & \sin \frac{\pi}{6}=\frac{1}{2} & \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} & \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} & \cos \frac{\pi}{3}=\frac{1}{2} \\
\tan \frac{\pi}{4}=1 & \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} & \tan \frac{\pi}{3}=\sqrt{3}
\end{array}
$$

Signs of the trigonometric functions:

Example 2.

(a.) If $\sin \theta=\frac{3}{5}(\underbrace{0<\theta<\pi / 2)}$, find the remaining trigonometric rations.

$$
\left.\cos \theta=\frac{4}{5}\right] \sin \theta=\frac{3}{5}
$$

(b.) If $\cos \theta=-\frac{1}{3} \overbrace{\pi<\theta<3 \pi / 2})$, find the remaining trigonometric rations.
$\cos \theta=-\frac{1}{3}$
$\sin \theta=-\frac{\sqrt{8}}{3}$
$\tan \theta=\sqrt{8}$

Trigonometric Identities:

$$
\begin{aligned}
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta & =\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta} \quad \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \begin{array}{l}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\tan ^{2} \theta+1=\sec ^{2} \theta \\
\cot ^{2} \theta+1=\csc ^{2} \theta
\end{array}
\end{aligned}
$$

$$
\left.\begin{array}{c}
\sin (-\theta)=-\sin \theta \quad \cos (-\theta)=\cos \theta \\
\sin (\theta+2 \pi)=\sin \theta \quad \cos (\theta+2 \pi)=\cos \theta \\
\tan (\theta+\pi)=\tan \theta \quad \cot (\theta+\pi)=\cot \theta \\
\sin (x+y)=\sin x \cos y+\cos x \sin y \\
\sin (x-y)=\sin x \cos y-\cos x \sin y \\
\cos (x+y)=\cos x \cos y-\sin x \sin y \\
\cos (x-y)=\cos x \cos y+\sin x \sin y \\
\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y} \\
\sin ^{2} x=2 \sin x \cos x
\end{array}\right] \begin{gathered}
\cos ^{2} x=\frac{1+\cos 2 x}{2} \\
\cos 2 x=\cos \sin ^{2} x-\sin ^{2} x=1-2 \sin ^{2} x=1 \\
\sin ^{2} x=\frac{1-\cos 2 x}{2} \\
\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)] \\
\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)] \\
\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]
\end{gathered}
$$

$$
\cos y=\frac{1}{5 \sec y}=\frac{4}{5}
$$

$\begin{aligned} \cos y & =\frac{1}{5 \sec y}=\frac{4}{5} \\ \text { Example 4. If } \sin x & =\frac{1}{3} \text { and } \sec y\end{aligned}=\frac{1}{4}$, where x and y lie between 0 and $\pi / 2$, evaluate the expression
(a.) $\cos (x-y)=\underbrace{\cos x}_{\frac{\sqrt{8}}{3}} \underbrace{\cos y}_{4 / 5}+\underbrace{\sin x}_{1 / 3} \underbrace{\sin y}_{\frac{3}{5}}$
$=\frac{\sqrt{8}}{3} \cdot \frac{4}{5}+\frac{1}{3} \cdot \frac{3}{5}=\frac{4 \sqrt{8}+3}{15}$

(b.) $\sin 2 y=2 \sin y \cos y$

$$
=2 \frac{4}{5} \cdot \frac{3}{5}=\frac{24}{25}
$$

Example 5. Find all values of x in the interval $[0,2 \pi]$ that satisfy the equation:
(a.) $2 \cos x-11=0$

$$
\begin{aligned}
2 \cos x & =1 \\
\cos x & =\frac{1}{2} \\
x & =\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}
\end{aligned}
$$

$$
x= \pm \frac{\pi}{3}+2 \pi n
$$

$$
\begin{array}{ll}
n=0 & : \\
n=1 & : x=\frac{\pi}{3},
\end{array} \quad x=-\frac{\pi}{3}+2 \pi=\frac{5 \pi}{3}
$$

$$
\begin{array}{ll}
\text { (b.) } 2 \cos x+\sin 2 x=0 \\
2 \cos x+2 \sin x \cos x=0 \\
2 \cos x(1+\sin x)=0 & \sin 2 x=2 \sin x \cos x \\
\end{array}
$$

| $\cos x=0$ | or | $1+\sin x$ |
| :--- | :--- | ---: |$=0$

$$
x=\frac{\pi}{2}, \frac{3 \pi}{2}
$$

$$
x=\frac{3 x}{2}
$$

Graphs of the trigonometric functions.

$y=\sin x$

$-1 \leq \sin x \leq 1$

Example 6. Sketch the graph of $f(x)=1-\sin x$

1) Take the graph of $\sin x$
2) flip it about the x-axis
3) Shoff the flipped graph I unit up.
$\begin{array}{ll}\text { Example 7. Prove the equality: } & \sin ^{2} x+\cos ^{2} x=1 \rightarrow 1-\cos ^{2} x=\sin ^{2} x \\ & \tan x=\frac{\sin x}{\cos x}\end{array}$
$\tan x=\frac{\sin x}{\cos x}$
LHS: $\left(\frac{\sin x}{\cos x}\right)^{2}-\sin ^{2} x=\frac{\sin ^{2} x}{\cos ^{2} x}-\sin ^{2} x=\sin ^{2} x\left[\frac{1}{\cos ^{2} x}-1\right]$

$$
\begin{gathered}
=\sin ^{2} x \cdot \frac{1-\cos ^{2} x}{\cos ^{2} x}=\sin ^{2} x \cdot \frac{\sin ^{2} x}{\cos ^{2} x} \\
=\sin ^{2} x \cdot \tan ^{2} x=\text { DHS }
\end{gathered}
$$

