Section 1.2 The dot product

Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$. If either \vec{a} or \vec{b} is $\overrightarrow{0}$, we define $\vec{a} \cdot \vec{b}=0$.

Example 1. If the vectors \vec{a} and \vec{b} have lengths 2 and 6 , and the angle between them is $\pi / 4$, find $\vec{a} \cdot \vec{b}$.

$$
\begin{aligned}
|\vec{a}|=2, \quad \vec{b}=6, \quad \theta & =\pi / 4 \\
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =2(b) \cos \frac{\pi}{4}=2(6) \frac{\sqrt{2}}{2} \\
& =6 \sqrt{2}
\end{aligned}
$$

If $\vec{a}=<a_{1}, a_{2}>$ and $\left.\vec{b}=<b_{1}, b_{2}\right\rangle$, then

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}
$$

Example 2. Find $\vec{a} \cdot \vec{b}$ if $\vec{a}=<2,3>$ and $\vec{b}=\vec{\imath}-3 \vec{\jmath}$

$$
\vec{a} \cdot \vec{b}=2(1)+3(-3)=-7 \quad=\langle 1,-3\rangle
$$

Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\pi / 2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.

$$
\left\{\begin{array}{l}
\vec{a} \cos \frac{\pi}{2}=0 \\
-\frac{1}{b} \\
\end{array}\right.
$$

Example 3. Find the angle between the vectors $\vec{a}=6 \vec{\imath}-2 \vec{\jmath}$ and $\vec{b}=\langle 1,1\rangle$.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \longrightarrow \quad \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

$$
\begin{gathered}
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{6(1)-2(1)}{\sqrt{6^{2}+(-2)^{2}} \sqrt{1+1}}=\frac{4}{\sqrt{2} \cdot \sqrt{40}}=\sqrt{\frac{1}{\sqrt{5}}} \\
\theta=\arccos \left(\frac{1}{\sqrt{5}}\right) \approx 63.4^{\circ}
\end{gathered}
$$

Example 4. Determine whether the given vectors are orthogonal, parallel, or neither.

$$
\begin{aligned}
& \text { mole 4. Determine whether the given vectors are orthogonal, parallel, or neither. } \begin{array}{l}
\vec{a}=\left\langle a_{1}, a_{2}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}\right\rangle \text { are parallel if and only if } \frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}} \\
\\
\text { perpendicular } \vec{a} \cdot \vec{b}=0
\end{array}
\end{aligned}
$$

(a.) $\vec{a}=\langle 1,-2\rangle, \vec{b}=-2 \vec{\imath}+4 \vec{\jmath}$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=1(-2)-2(4)=-10 \neq 0 \quad \text { not orthogonal } \\
& \frac{1}{-2} \neq \frac{-2}{4} \quad-\frac{1}{2}=-\frac{1}{2} \quad \text { parallel }
\end{aligned}
$$

(b.) $\vec{a}=\langle 3,1\rangle, \vec{b}=\langle-3,9\rangle$

$$
\begin{array}{r}
\vec{a} \cdot \vec{b}=3(-3)+1(9)=0 \\
\text { orthogonal }
\end{array}
$$

(c.) $\vec{a}=\begin{aligned} & \langle-1,4\rangle \\ & -\vec{\imath}+4 \vec{\jmath}, \vec{b}=3 \vec{\imath}-2\rangle\end{aligned}$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=-1(3)+4(-2)=-11 \neq 0 \quad \text { neither parallel nor perpendicular } \\
& -\frac{1}{3} \neq \frac{4}{-2}
\end{aligned}
$$

Properties of the dot product If \vec{a}, \vec{b}, an \vec{c} are vectors and k is a scalar, then

1. $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}$
2. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
3. $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
4. $(k \vec{a}) \cdot \vec{b}=k(\vec{a} \cdot \vec{b})=\vec{a}(k \vec{b})$
5. $\overrightarrow{0} \cdot \vec{a}=0$

$\triangle P R S$

$$
\begin{aligned}
& |\overrightarrow{P S}|=|\vec{b}| \cos \theta \\
& =|\vec{b}| \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \mid \vec{b} Y}
\end{aligned}
$$

$$
0<\theta<\frac{\pi}{2}
$$

$\overrightarrow{P S}=\operatorname{proj}_{\vec{a}} \vec{b}$ is called the vector projection of \vec{b} onto \vec{a}.
$|\overrightarrow{P S}|=$ comp $_{\vec{a}} \vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along

$$
\operatorname{comp}_{\varnothing} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}
$$

unitvector in the direction of \vec{a}

$$
\begin{aligned}
& \overrightarrow{P S}=|\overrightarrow{P S}| \frac{\vec{a}}{|\vec{a}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \frac{\vec{a}}{|\vec{a}|} \\
& \quad \operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}
\end{aligned}
$$

Example 5. Find the scalar and the vector projections of $\vec{b}=\langle 4,2\rangle$ onto $\vec{a}=\vec{\imath}+\vec{\jmath}$.

$$
\begin{aligned}
& \operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{4(1)+2(1)}{\sqrt{1+1^{\prime}}}=\frac{6}{\sqrt{2}} \\
& \operatorname{prof}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{6}{2}\langle 1,1\rangle=\langle 3,3\rangle
\end{aligned}
$$

if a force \vec{F} moves an object along a straight line from A to B, then the work done by the force

$$
W=\vec{F} \cdot \overrightarrow{卂 B}
$$

Definition. Given the nonzero vector $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$, the orthogonal complement of \vec{a} is the vector $\vec{a}^{\perp}=\left\langle-a_{2}, a_{1}\right\rangle$. or $\vec{a}^{\perp}=\left\langle a_{2},-a_{1}\right\rangle$

Vectors \vec{a} and \vec{a}^{\perp} are orthogonal and $|\vec{a}|=\left|\vec{a}^{\perp}\right|$

$$
\vec{a} \cdot \vec{a}+1=0
$$

The distance from the point P to the line L

$$
|P Q|=\operatorname{comp}_{\overrightarrow{A B}^{\perp}} \overrightarrow{A P}
$$

$$
d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

Example 6. Find the distance from the point $\overbrace{(0,4)}^{x_{1},}$ to the line $2 x+5 y=-3$.

$$
d=\left|\frac{2(0)+5(4)+3}{\sqrt{2^{2}+5^{2}}}\right|=\frac{\overbrace{2}^{a}+\overbrace{5}^{b} y+3}{\sqrt{29}} \stackrel{i}{3}_{c}^{c}=0
$$

