Section 1.3 Vector functions.

Definition. The curve of a type $x=x(t), y=y(t)$ is called a parametric curve and the variable t is called a parameter.

Definition. Vector $\overrightarrow{\vec{r}}(t)=\langle x(t), y(t)\rangle=x(t) \vec{\imath}+y(t) \vec{\jmath}$ is called the position vector for the point with coordinates $(x(t), y(t))$.

A function such as $\vec{r}(t)$, whose range is a set of vectors, is called a vector function of t.

$$
\begin{aligned}
& \text { parameter } t \\
& \begin{array}{l}
\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array}\right\} \quad \text { parametric equations } \\
\text { of the curve. }
\end{array} \\
& \text { Position vector of }(x(t), y(t)) \\
& \vec{r}(t)=\langle x(t), y(t)\rangle
\end{aligned}
$$

Example 1.

(a.) Sketch the curve represented by the parametric equations $x(t)=1-t, y=t^{2}$.

$x(t)=\cos t, \quad y(t)=\cos 2 t, \quad 0 \leqslant t \leqslant 2 \pi$

$$
\begin{array}{ll}
t=0: \quad x(0)=\cos 0=1 \\
& y(0)=\cos 0=1 \\
t=\frac{\pi}{4}: \quad x\left(\frac{\pi}{4}\right)=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \\
& y\left(\frac{\pi}{4}\right)=\cos 2\left(\frac{\pi}{4}\right)=\cos \frac{\pi}{2}=0
\end{array}
$$

(b.) Eliminate the parameter to find the Cartesian equation of the curve.

$$
\begin{aligned}
x=\cos t, y=\cos 2 t & =2 \cos ^{2} t-1 \\
y & =2 x^{2}-1 \quad \text { parabola. } .
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x(t)=2 \cos \theta \\
y(t)=3 \sin \theta
\end{array}\right.
$$

Sketch the curve and find its Cartesian equation.

$$
\begin{aligned}
& \frac{x}{2}=\frac{2 \cos \theta}{2} \Rightarrow \cos \theta=\frac{x}{2} \\
& \frac{y}{3}=\frac{3 \sin \theta}{3} \Rightarrow \sin \theta=\frac{y}{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=2 \cos \theta \\
& y=3 \sin \theta
\end{aligned}
$$

$$
\begin{array}{ll}
\theta=0: & x=2 \cos 0=2 \\
& y=3 \sin 0=0 \\
\theta=\frac{\pi}{2}: & x=2 \cos \pi / 2=0 \\
& y=3 \sin \pi / 2=3
\end{array}
$$

Example 2. An object is moving in the $x y$-plane and its position after t seconds is $\vec{r}(t)=<t-3, t^{2}-2 t>$.
(a.) Find the position of the object at time $t=5$.

$$
\vec{r}(5)=\left\langle 5-3,5^{2}-2(5)\right\rangle=\langle 2,15\rangle
$$

(b.) At what time is the object at the point $(1,8)$.

$$
\begin{aligned}
& \text { Find } t \text { such that } \vec{r}(t)=\langle 1,8\rangle \\
& \left.<t-3, t^{2}-2 t\right\rangle=\langle 1,8\rangle \\
& \left\{\begin{array}{l}
t-3=1 \Rightarrow t=4 \\
t^{2}-2 t=8
\end{array}\right.
\end{aligned}
$$

(c.) Does the object pass through the point $(3,20)$.

$$
\begin{aligned}
&\left\langle t-3, t^{2}-2 t\right\rangle=\langle 3,20\rangle \\
&\left\{\begin{array}{l}
t-3=3 \longrightarrow \quad t=6 \\
t^{2}-2 t=20
\end{array}\right. \\
& \text { plug } t=6 \text { into the and equation: } \\
&\left.6^{2}-2 / 6\right)=36-12=24 \neq 20 \\
& N O
\end{aligned}
$$

(d.) Find an equation in x and y whose graph is the path of the object.

$$
\begin{aligned}
& x=t-3, \quad y=t^{2}-2 t \\
& t=x+3 \\
& y=(x+3)^{2}-2(x+3)
\end{aligned}
$$

Problem: Write down an equation of a line through $p_{0}\left(x_{0}, y_{0}\right)$ parallel to the vector $\vec{V}=\langle a, b\rangle$
A line L is determined by a point P_{0} on L and a direction. Let \vec{v} be a vector parallel to line L. Let P be be an arbitrary point on L and let $\overrightarrow{r_{0}}$ and \vec{r} be the position vectors of P and P_{0}.

Then the vector equation of line L is

$$
\begin{aligned}
& \vec{r}(t)=\overrightarrow{r_{0}}+t \vec{v} \\
& \vec{r}\left(t_{2}\right)=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle
\end{aligned}
$$

$$
\vec{r}(t)=\langle x(t), y(t)\rangle=\left\langle x_{0}+t a, y_{0}+t b\right\rangle
$$

If $\vec{r}=\langle x(t), y(t)\rangle, \vec{v}=\langle a, b\rangle$ and $P\left(x_{0}, y_{0}\right)$ then parametric equations of the line L are

$$
x(t)=x_{0}+a t, \quad y(t)=y_{0}+b t
$$

Example 3. Find a vector, parametric, and Cartesian equations for the line containing the point $(2,-1)$ and parallel to $2 \vec{\imath}+3 \vec{j}$.
vector equation: $\vec{r}(t)=\langle\overrightarrow{2},-1\rangle+t\langle 2,3\rangle$
parametric equations: $\quad\langle x(t), y(t)\rangle=\langle 2,-1\rangle+t\langle 2,3\rangle$

$$
\left\{\begin{array}{l}
x(t)=2+2 t \\
y(t)=-1+3 t
\end{array} \rightarrow \quad t=\frac{x-2}{2}\right.
$$

Cartesian equation: eliminate t.

$$
\begin{aligned}
2(y)= & \left(-1+3 \frac{x-2}{2}\right) 2 \Rightarrow 2 y=-2+3(x-2) \\
& -2+3 x-6-2 y=0 \\
& 3 x-2 y-8=0
\end{aligned}
$$

Example 4. Find a vector and parametric equations for the line passing through the points $A(1,3)$ and $B(2,-1)$.
$\left\{\begin{array}{l}\overrightarrow{A B} \text { is parallel to the line. } \\ \left.\overrightarrow{\overrightarrow{A B}=\langle 2-1,-1-3\rangle} \begin{array}{l}=\langle 1,-4\rangle=\vec{v} \\ \vec{B}(2,-1) \\ \left\{\begin{array}{l}x(t)=\langle 1,3\rangle+t\langle 1,-4\rangle \\ y(t)=3-4 t\end{array}\right. \\ \text { or }\end{array} \begin{array}{l}\vec{r}(t)=\langle 2,-1\rangle+t\langle 1,-4\rangle \\ \left\{\begin{array}{l}x(t)=2+t \\ y(t)=-1-4 t\end{array}\right.\end{array}\right)\end{array}\right.$

