Definition. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit of $f(x)$, as x approaches a, equals L " if we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently close to a but not equal to a.

Definition. We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say the left-handed limit of $f(x)$ as x approaches a (or the limit of $f(x)$ as x approaches a from the left), equals L if we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently close to a and $x<a$.

Definition. We write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

and say the right-handed limit of $f(x)$ as x approaches a (or the limit of $f(x)$ as x approaches a from the right), equals L if we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently close to a and $x>a$.

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if } \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

Example 1. Given the graph of the function f

Find:

1. $\lim _{x \rightarrow 1} f(x)$
2. $\lim _{x \rightarrow 2^{+}} f(x)$
3. $\lim _{x \rightarrow 2^{-}} f(x)$
4. $\lim _{x \rightarrow 3^{+}} f(x)$
5. $\lim _{x \rightarrow 3^{-}} f(x)$

Definition. Let f be a function defined on both sides of a, except, possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrary large by taking x to be sufficiently close to a but not equal to a.
Definition. Let f be a function defined on both sides of a, except, possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

means that the values of $f(x)$ can be made arbitrary large negative by taking x to be sufficiently close to a but not equal to a.

Definition. The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{ccc}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty
\end{array}
$$

Example 2. For the function g whose graph is shown, state the following:

1. $\lim _{x \rightarrow-4} g(x)$
2. $\lim _{x \rightarrow-1} g(x)$
3. $\lim _{x \rightarrow 2} g(x)$
4. $\lim _{x \rightarrow 6} g(x)$

Example 3. Find
(a.) $\lim _{x \rightarrow 4^{+}} \frac{5}{x-4}$
(b.) $\lim _{x \rightarrow 4^{-}} \frac{5}{x-4}$
(c.) $\lim _{x \rightarrow 4} \frac{5}{x-4}$

Definition. We write

$$
\lim _{t \rightarrow a} \vec{r}(t)=\vec{b}
$$

and say "the limit of $\vec{r}(t)$, as t approaches a, equals \vec{b} " if we can make vector $\vec{r}(t)$ arbitrary close to \vec{b} by taking t to be sufficiently close to a but not equal to a.

If $\vec{r}(t)=<f(t), g(t)>$, then

$$
\lim _{t \rightarrow a} \vec{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t)\right\rangle
$$

provided the limits of the component functions exist.

