## Chapter 2. Limits and rates of change

## Section 2.3 Calculating limits using the limit laws

Limit laws Suppose that $c$ is a constant and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ where $n$ is a positive integer
7. $\lim _{x \rightarrow a} c=c$
8. $\lim _{x \rightarrow a} x=a$
9. $\lim _{x \rightarrow a} x^{n}=a^{n}$ where $n$ is a positive integer
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ where $n$ is a positive integer
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ where $n$ is a positive integer

Example 1. Given that $\lim _{x \rightarrow a} f(x)=2, \lim _{x \rightarrow a} g(x)=-1$, and $\lim _{x \rightarrow a} h(x)=10$. Find the limits that exist.

1. $\lim _{x \rightarrow a}[2 f(x)-g(x)-h(x)]=\lim _{x \rightarrow a}(2) f(x)-\lim _{x \rightarrow a} g(x)-\lim _{x \rightarrow a} h(x)$
2. $\lim _{x \rightarrow a} \frac{g(x)}{h(x)-2 f(x)}=\frac{\lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} h(x)-2 \lim _{x \rightarrow a} f(x)}=\frac{-1}{10-2(2)}=-\frac{1}{6}$

Example 2. Evaluate the given limit and justify each step. Do not USE THE L'Hospital's RUle. 1. $\lim _{x \rightarrow 4}\left(2 x^{2}+4 x-1\right)=2(4)^{2}+4(4)-1=2(16)+16-1=47$
2. $\lim _{y \rightarrow(3} \frac{3\left(8 y^{2}-1\right)}{2 y^{2}(y-1)^{4}}=\frac{3\left(8(3)^{2}-1\right)}{2(3)^{2}(3-1)^{2}}=\frac{3(71)}{2(9) 2^{4}}=\frac{71}{96}$
3. $\lim _{x \rightarrow 3} \sqrt[4]{x^{2}+2 x+1}=\sqrt[4]{(3)^{2}+2(3)+1}=\sqrt[4]{16}=2$

## If $f$ is a polynomial or a rational function and $a$ is in the domain of $f$, then $\lim _{x \rightarrow a} f(x)=f(a)$

Example 3. Evaluate each limit, if it exist.

1. $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1}=\left|\frac{0}{0}\right|=\lim _{x \rightarrow-1} \frac{(x+1)(x-2)}{x+y}=\lim _{x \rightarrow-1}(x-2)=-3$
2. $\lim _{x \rightarrow-1} \frac{x^{2}-x-3}{x+1}=\left|\frac{-1}{0}\right|$
DUE
$x=-.99 \Rightarrow-102 \ldots \longleftarrow \lim _{x \rightarrow-1+} \frac{x^{2}-x-3}{x+1}=-\infty$
$x=-1.01 \Rightarrow 96.99 \curvearrowright \lim _{x \rightarrow-1^{-}} \frac{x^{2}-x-3}{x+1}=\infty$
3. $\lim _{t \rightarrow 1} \frac{t^{3}-t}{t^{2}-1}=\lim _{t \rightarrow 1} \frac{t\left(t^{2}-1\right)}{\left(t^{2}-1\right)}=\lim _{t \rightarrow 1} t=1$

$$
\begin{array}{r}
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
\lim _{h \rightarrow 0} \frac{(h+1)^{2}-1}{h}=\lim _{h \rightarrow 0} \frac{h^{2}+2 h+y-y}{h}=\lim _{h \rightarrow 0} \frac{h^{2}+2 h}{h} \\
=\lim _{h \rightarrow 0} \frac{k(h+2)}{h}=\lim _{h \rightarrow 0}(h+2)=2
\end{array}
$$

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

6. $\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{(\sqrt{1+3 x}-1)(\sqrt{1+3 x}+1)}=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{(\sqrt{1+3 x})^{2}-1^{2}}=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{1+3 x-1}$

$$
=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{3 x}=\lim _{x \rightarrow 0} \frac{\sqrt{1+3 x}+1}{3}=\frac{2}{3}
$$

7. $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)=\lim _{x \rightarrow 1} \frac{1(x+1)-2}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}$
$x^{2}-1=(x-1)(x+1)$

$$
x^{2}-1=(x-1)(x+1)
$$

8. $\lim _{t \rightarrow 2} \vec{r}(t), \vec{r}(t)=\left\langle\frac{4-t}{2-\sqrt{t}}, \frac{t^{2}-4}{t-2}\right\rangle$

$$
\begin{array}{r}
\lim _{t \rightarrow 2}\left\langle\frac{4-t}{2-\sqrt{t}}, \frac{t^{2}-4}{t-2}\right\rangle=\left\langle\frac{4-2}{2-\sqrt{2}}, \lim _{t \rightarrow 2} \frac{(t-2)(t+2)}{t-2}\right\rangle \\
=\left\langle\frac{2}{2-\sqrt{2}}, \quad \lim _{t \rightarrow 2}(t+2)\right\rangle=\left\langle\frac{2}{2-\sqrt{2}}, 4\right\rangle
\end{array}
$$

9. $\lim _{x \rightarrow-3}|x+3|=0$

$$
|x+3|= \begin{cases}x+3, & \text { if } x \geqslant-3 \\ -(x+3), & \text { if } x<-3\end{cases}
$$

pilcewise function

$$
\left\lvert\, \begin{aligned}
& \lim _{\substack{x \rightarrow-3^{-} \\
(x<-3)}}|x+3|=\lim _{x \rightarrow-3^{-}}[-(x+3)]=0 \\
& \lim _{\substack{x \rightarrow-3^{+} \\
(x>-3)}}|x+3|=\lim _{x \rightarrow-3^{+}}(x+3)=0
\end{aligned}\right.
$$

$$
\underbrace{4 y}_{-3} y
$$

10. $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ DNE

$$
|x-2|=\left\{\begin{array}{l|l}
x-2, & \text { if } x \geqslant 2 \\
-(x-2), & \text { if } x<2
\end{array} \left\lvert\, \begin{array}{lll}
(x>2) & x-2 & x \rightarrow 2^{+} \\
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2} \\
(x<2)
\end{array}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x-2}=-1\right.\right.
$$

Example 4. Let

$$
f(x)= \begin{cases}x^{2}-2 x+2, & \text { if } x<1 \\ 3-x, & \text { if } x \geq 1\end{cases}
$$

Find $\lim _{x \rightarrow 1} f(x)$ DUE

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(3-x)=3-1=2 \quad \text { don't match } \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}-2 x+2\right)=1-2+2=1
\end{aligned}
$$

Theorem If $f(x) \leq g(x)$ for all $x$ in an open interval that contains $a$ (except possibly at $a$ ) and the limits of $f$ an $g$ both exist as $x$ approaches $a$, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$



The Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ for all $x$ in an open interval that contains $a$ (except possibly at $a$ ) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Example 5. Use the Squeeze Theorem to show that $\lim _{x \rightarrow 0} x^{2} \cos (20 \pi x)=0$.

$$
\begin{aligned}
& (-1 \leq \cos (20 \pi x) \leq 1)\left(x^{2}\right) \\
& \sum_{f(x)}^{-x^{2} \leq x^{2} \cos (20 \pi x) \leq \underbrace{x^{2}}_{h(x)}} \\
& f(x)=-x^{2}, \lim _{x \rightarrow 0}\left(-x^{2}\right)=0 \\
& h(x)=x^{2}, \lim _{x \rightarrow 0} x^{2}=0 \\
& \text { By the Squeeze Thu, } \lim _{x \rightarrow 0} x^{2} \cos (20 \pi x)=0
\end{aligned}
$$

