Chapter 2. Limits and rates of change

Definition. A function f is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a) \quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

If f is not continuous at a, then f has discontinuity at a :

- if $\lim _{x \rightarrow a^{+}} f(x) \neq \lim _{x \rightarrow a^{-}} f(x)$, then f has a jump discontinuity at a,
- if either $\lim _{x \rightarrow a^{+}} f(x)=\infty$ or $\lim _{x \rightarrow a^{-}} f(x)=\infty$, then f has an infinity discontinuity at a and we say line $x=a$ is a vertical asymptote of the curve $y=f(x)$
- if $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x) \neq f(a)$, then f has a removable discontinuity at a
hole in a graph

Example 1. Show that function $f(x)=x^{2}+2 x+3$ is continuous at $a=2$.

$$
\begin{aligned}
& \text { Show that } \lim _{x \rightarrow 2} f(x)=f(2) \\
& \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}\left(x^{2}+2 x+3\right)=2^{2}+2(2)+3=11 \\
& \text { match } \\
& f(2)=2^{2}+2(2)+3=11 \\
& \text { Thus, } f(x)=x^{2}+2 x+3 \text { is continuous }
\end{aligned}
$$

Example 2. Explain why the function

$$
f(x)= \begin{cases}\frac{1}{(x-1)^{2}}, & \text { if } x \neq 1 \\ 0, & \text { if } x=1\end{cases}
$$

is discontinuous at $a=1$. Sketch the graph of the function.

$$
\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty \quad \text { infinity discontinuity @1. }
$$

Example 3. Find the points at which f is discontinuous.

$$
f(x)= \begin{cases}\frac{1}{x}, & \text { if } x<-1 \quad O \text { is not in the int } \\ x, & \text { if }-1 \leq x<1 \\ \frac{1}{x^{2}}, & \text { if } x \geq 1 \quad O \text { is not in the interval }\end{cases}
$$

$\frac{1}{x}$ has the infinity discontinuity @ 0
$\frac{1}{x^{2}}$ has the infinity discontinuity @ 0

no POINE OF DISCONTINUITY

Definition. A function f is continuous from the right at a number a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

f is continuous from the left at a number a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Definition A function f is continuous on an interval if it is continuous at every number in the interval. (At an endpoint of the interval we understand continuous to mean continuous from the right or continuous from the left.)

Example 4. Show that the function $f(x)=x \sqrt{16-x^{2}}$ is continuous on its domain. State the domain.

$$
\begin{aligned}
& f(x)=x \sqrt{16-x^{2}} \text {. domain: } 16-x^{2} \geq 0 \\
& -4 \leq x \leq 4 \\
& \text { Pick an arbitrary point }-4 \leq t \leq 4 \\
& \text { show that } f(x) \text { is continuous @ } t \\
& \lim _{x \rightarrow t} f(x)=f(t) \\
& \lim _{x \rightarrow t} x \sqrt{16-x^{2}}=t \sqrt{16-t^{2}}, \quad f(t)=t \sqrt{16-t^{2}} \\
& \text { these, } f(x) \text { is contimatch on }[-4,4]
\end{aligned}
$$

$$
\begin{array}{l|l}
\text { Continuous on }(-\infty, \infty) \\
f(x)=a x+b \\
f(x)=a x^{2}+b x+c \\
f(x)=a x^{n}+b x^{n-1}+\ldots+c x+d \\
f(x)=\cos x \\
f(x)=\sin x
\end{array} \quad\left\{\begin{array}{l}
\text { Rational function } \\
R(x)=\frac{a x^{n}+b x^{n-1}+\ldots+e x+d}{e x^{m}+f x^{m-1}+\ldots+g x+h} \\
\text { continuous whenever } \\
\text { exm}+f x^{m-1}+\ldots+g x+h \neq 0
\end{array} \left\lvert\, \begin{array}{l}
y=\tan x \\
\text { infinity discontinuities @ } \\
x=\frac{\pi}{2}+\pi n, n=0, \pm 1, \pm 2, \ldots \\
y=\cot x \\
\text { infinity discontinuities @ } \\
x=\pi n, \quad n=0, \pm 1, \pm 2, \ldots
\end{array}\right.\right.
$$

Example 5. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$
\begin{aligned}
& f(x)=\left\{\begin{aligned}
& c x+1, \text { if } x \leq 3 \\
& c x^{2}-1, \text { if } x>3 \\
& \text { make sure that } \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)
\end{aligned}\right. \\
& \qquad \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(c x+1)=3 c+1 \\
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(c x^{2}-1\right)=9 c-1 \\
& 3 c+1=9 c-1 \\
& 9 c-3 c=1+1 \\
& 6 c=2 \Rightarrow c=\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

Theorem. If f and g are continuous at a and c is a constant, then the following functions are also continuous at a :

1. $f+g$
2. $f \nrightarrow g$
3. $c f$
4. $f g$
5. $\frac{f}{g}$ if $g(a) \neq 0$

Theorem.

(a.) Any polynomial is continuous on $(-\infty, \infty)$
(b.) Any rational function is continuous on its domain

Theorem. If n is a positive even integer, then $f(x)=\sqrt[n]{x}$ is continuous on $[0, \infty)$. If n is a positive odd integer, then f is continuous on $(-\infty, \infty)$.

Example 6. On what interval is the function $h(x)=\sqrt{x}+\frac{1}{x-2}-\frac{1+2 x}{x^{2}+4}$ continuous?

$$
\begin{aligned}
& \frac{1+2 x}{x^{2}+4} \text { continuous for all } x . \\
& \frac{1}{x-2} \text { infinity discontinuity } @ 2 \\
& \sqrt{x} \text { continuous on }[0, \infty) \\
& 0[0,2) \cup(2, \infty)
\end{aligned}
$$

Theorem. If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then

$$
\lim _{x \rightarrow \infty} f(g(x))=f(b)=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Theorem. If g is continuous at a and f is continuous at $g(a)$, then $(f \circ g)(x)=f(g(x))$ is continuous at a.

The intermediate value theorem Suppose that f is continuous on the closed interval $[a, b]$.
and let N be any number strictly between $f(a)$ and $f(b)$. Then there exist a number c in (a, b)
such that $f(c)=N$.
Example 7. Use the intermediate value theorem to show that there is a root of the equation $x^{3}+2 x=x^{2}+1$ in the interval $(0,1)$.

$$
x^{3}+2 x=x^{2}+1 \Rightarrow
$$

$$
\begin{aligned}
& x^{3}+2 x-x^{2}-1=0 \\
& f(x)=x^{3}+2 x-x^{2}-1 \\
& \quad f(0)=0+0-0-1=-1<0 \\
& \quad f(1)=1^{3}+2(1)-1^{2}-1=1>0
\end{aligned}
$$

By the Intermediate value Theorem, there is a point $0<c<1$ such that $f(c)=0$

