Section 2.6 Limits at infinity; horizontal asymptotes
Definition Let f be a function defined on (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently large.
Definition Let f be a function defined on $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently large negative.
Definition The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either
or

$$
\begin{array}{|l|}
\lim _{x \rightarrow \infty} f(x)=L \\
\lim _{x \rightarrow-\infty} f(x)=L \\
\hline
\end{array}
$$

Limit laws Suppose that c is a constant and the limits $\lim _{x \rightarrow \pm \infty} f(x)$ and $\lim _{x \rightarrow \pm \infty} g(x)$ exist. Then

1. $\lim _{x \rightarrow \pm \infty}[f(x)+g(x)]=\lim _{x \rightarrow \pm \infty} f(x)+\lim _{x \rightarrow \pm \infty} g(x)$
2. $\lim _{x \rightarrow \pm \infty}[f(x)-g(x)]=\lim _{x \rightarrow \pm \infty} f(x)-\lim _{x \rightarrow \pm \infty} g(x)$
3. $\lim _{x \rightarrow \pm \infty} c f(x)=c \lim _{x \rightarrow \pm \infty} f(x)$
4. $\lim _{x \rightarrow \pm \infty} f(x) g(x)=\lim _{x \rightarrow \pm \infty} f(x) \cdot \lim _{x \rightarrow \pm \infty} g(x)$
5. $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \pm \infty} f(x)}{\lim _{x \rightarrow \pm \infty} g(x)}$ if $\lim _{x \rightarrow \pm \infty} g(x) \neq 0$
6. $\lim _{x \rightarrow \pm \infty}[f(x)]^{n}=\left[\lim _{x \rightarrow \pm \infty} f(x)\right]^{n}$ where n is a positive integer
7. $\lim _{x \rightarrow \pm \infty} c=c$
8. $\lim _{x \rightarrow \pm \infty} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow \pm \infty} f(x)}$ where n is a positive integer

Theorem If $r>0$ is a rational number, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0
$$

Example 1. Find each of the following limits:
(a.) $\lim _{y \rightarrow \infty} \frac{7 y^{3}+4 y}{2 y^{3}-y^{2}+3}=\lim _{y \rightarrow \infty} \frac{y^{3} \frac{7 y^{3}+4 y}{y^{3}}}{y^{3} \frac{2 y^{3}-y^{2}+3}{y^{3}}}=\lim _{y \rightarrow \infty} \frac{\frac{7 y^{3}}{y^{3}}+\frac{4 y}{y^{3}}}{\frac{2 y^{3}}{y^{3}}-\frac{y^{2}}{y^{3}}+\frac{3}{y^{3}}}$ $=\lim _{y \rightarrow \infty} \frac{7+\frac{490}{y^{2}}}{2-\frac{1}{y^{1}+\frac{33}{y^{3}}}}$
$=\frac{7}{2}$
(b.) $\lim _{x \rightarrow \infty} \frac{x+4}{x^{3}-3}=\lim _{x \rightarrow \infty} \frac{x \frac{x+4}{x}}{x^{3} \cdot \frac{x^{3}-3}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \cdot \frac{\frac{x}{x}+\frac{4}{x}}{\frac{x^{3}}{x^{3}}-\frac{3}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}}{\frac{2}{1+\frac{4}{x}}{ }^{0}} \frac{1-\frac{3}{x^{3}}}{}{ }^{0}$

$$
=\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0
$$

(c.) $\lim _{t \rightarrow \infty} \frac{t^{2}-3 t+1}{2 t+3}=\lim _{t \rightarrow-\infty} \frac{t^{2} \frac{t^{2}-3 t+1}{t^{2}}}{\psi^{\frac{2 t+3}{t}}}=\lim _{t \rightarrow-\infty} \frac{t \cdot\left(1-\frac{3 t^{0}}{t}+\frac{1 t^{2}}{t^{2}}\right)}{2+3 t^{0}}=\lim _{t \rightarrow-\infty} \frac{t}{2}=-\infty$
$\lim _{t \rightarrow-\infty} \frac{t^{5}-5 t+151}{t^{3}+2 t+2016}=\lim _{t \rightarrow \infty} \frac{t^{5}\left(1-\frac{50}{t^{4}}+\frac{19)^{2}}{}{ }^{2}\right.}{t^{3}\left(1+\frac{27}{t^{\circ}}+\frac{20145}{t^{3}}\right)}=\lim _{t \rightarrow-\infty} t^{2}=\infty$

Example 2. Evaluate the following limits:
(a.) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+4 x}}{4 x+1}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2} \frac{x^{2}+4 x}{x^{2}}}}{x \frac{4 x+1}{x}}=\lim _{x \rightarrow \infty} \frac{-x \sqrt{1+\frac{4 x}{x}}}{x\left(4+\frac{1^{2}}{x}\right)}=\frac{1}{4}$

(c.) $\lim \sin x$ in continuous for all l_{x}.

$$
=\sin \left(\lim _{x \rightarrow \infty} \frac{1}{x}\right)=\sin 0=0
$$

(d.) $\lim _{x \rightarrow \infty} \frac{\sin ^{2} x}{x^{2}}$

Squeeze Thy

$$
\begin{aligned}
& \frac{0}{x^{2}} \leq \frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}} \\
& 0 \leq \frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}}
\end{aligned}
$$

as $x \rightarrow \infty$, values of $\sin x$ oscillate between - I and 1, they do not approach to a number

Example 3. Find the horizontal and vertical asymptotes of each curve

$$
\begin{aligned}
& \text { (a.) } y=\frac{x^{2}+4}{x^{2}-1} \\
& \text { V.A. } x^{2}-1=0 \\
& x=1
\end{aligned} \quad \begin{aligned}
& \text { HA. } \\
& \lim _{x \rightarrow \infty} \frac{x^{2}+4}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(1+\frac{4 x^{2}}{x^{2}}\right)^{0}}{x^{2}\left(1-\frac{x^{2}}{x^{2}}\right)}=1 \\
& y=1
\end{aligned}
$$

(b.) $y=\frac{x^{3}+1}{x^{2}+x}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{3}+1}{x^{2}+x}=\infty \quad \text { no horizontal asymptotes } \\
& \begin{array}{l}
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
a=x, b=1
\end{array} \frac{x^{3}+1}{x^{2}+x}=\frac{(x+1)\left(x^{2}-x+1\right)}{x(x+1)}=\frac{x^{2}-x+1}{x} \\
& \text { removable discontinuity @ } x=-1
\end{aligned}
$$

$$
\text { V.A. } x=0
$$

