Chapter 3. Derivatives
 Section 3.1 Derivatives

Definition. The derivative of a function f at a number a, denoted by $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if the limit exist.
Example 1. Find $f^{\prime}(a)$ if $f(x)=\sqrt{2 x-3}, a>3 / 2$., $f(a)=\sqrt{2 a-3}$

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{(\sqrt{2 x-3}-\sqrt{2 a-3})(\sqrt{2 x-3}+\sqrt{2 a+3})}{(x-a)(\sqrt{2 x-3}+\sqrt{2 a+3})} \\
& =\lim _{x \rightarrow a} \frac{(\sqrt{2 x-3})^{2}-(\sqrt{2 a-3})^{2}}{(x-a)(\sqrt{2 x-3}+\sqrt{2 a+3})}=\lim _{x \rightarrow a} \frac{2 x-3-(2 a-3)}{(x-a)(\sqrt{2 x-3}+\sqrt{2 a-3})} \\
& =\lim _{x \rightarrow a} \frac{2 x-3-2 a+3}{(x-a)(\sqrt{2 x-3}+\sqrt{2 a-3})}=\lim _{x \rightarrow a} \frac{2(x-a)}{(x-a)(\sqrt{2 x-3}+\sqrt{2 a-3})} \\
& \\
& =\lim _{x \rightarrow a} \frac{2}{\sqrt{2 x-3}+\sqrt{2 a-3}}=\frac{2}{\sqrt{2 a-3}+\sqrt{2 a-3}}=\frac{2}{2 \sqrt{2 a-3}}=\frac{1}{\sqrt{2 a-3}}
\end{aligned}
$$

Geometric interpretation of the derivative. $f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at the point $(a, f(a))$.
Example 2. Find an equation of the tangent line to $f(x)=\sqrt{2 x-3}$ at the point $(2,1)$.

$$
\begin{aligned}
& \text { Tangent line@ }(a, f(1 a)): y=\begin{array}{c}
=f^{\prime}(a)(x-a)+f(a) \\
a=2, f(2)=1,
\end{array} f^{\prime}(x)=\frac{1}{\sqrt{2 x-3}} \quad \text { (Example)) } \\
& f^{\prime}(2)=\frac{1}{\sqrt{2(2)-3}}=\frac{1}{1}=1 \\
& y=\overbrace{1}^{\prime}(2) \\
& y=x-1
\end{aligned}
$$

Other interpretations of the derivative.

- $f^{\prime}(a)$ is the instanteneous rate of change of $y=f(x)$ with respect to x when $x=a$.
- if $s=f(t)$ is the position function of a particle that moves along a straight line, then $f^{\prime}(a)$ is the velocity of the particle at time $t=a$

A function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f.
Definition. A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) if it is differentiable at every number in the interval.
Example 3. Where is the function $f(x)=|x-2|$ differentiable?

$$
\begin{aligned}
& |x-2|=\left\{\begin{array}{l}
x-2, \text { if } x \geqslant 2 \\
-(x-2), \text { if } x<2
\end{array}\right. \\
& \lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x-2}=-1 \\
& \lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{x-2}=1
\end{aligned}
$$

$$
\begin{array}{r}
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} \text { DNE } \\
f(x)=|x-2| \text { is not differentiable } @ x=2
\end{array}
$$

Theorem. If f is differentiable at a, then f is continuous at a When is the function not differentiable at $x=$

- f has a "corner" or "kink" at a
- f is discontinuous at a

- the curve $y=f(x)$ has a vertical tangent line at $x=a$

34. Match the graph of each function in (a)-(d) with the graph of its derivative in I-IV. Give reasons for you choices.
(a)

(b)

(d)

II

(a)

III

IV

