Section 3.4 Derivatives of trigonometric functions
Theorem. $\widehat{\lim _{\theta \rightarrow 0} \sin \theta=0}$.
Theorem. $\lim _{\theta \rightarrow 0} \cos \theta=1$.
Theorem. $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1 \quad \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1 \quad \lim _{\theta \rightarrow 0} \frac{\theta}{\tan \theta}=1$
Corollary. $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$.

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=\lim _{\theta \rightarrow 0} \frac{\frac{\sin \theta}{\cos \theta}}{\theta} & =\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta}=\frac{\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}}{\lim _{\theta \rightarrow 0} \cos \theta} \\
& =\frac{1}{1}=1
\end{aligned}
$$

Example 1. Find each limit
(a.) $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{2 x^{2}}$

$$
\begin{aligned}
& 1-\cos 2 x=2 \sin ^{2} x \\
&\left.=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{2 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2}=\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}\right]^{2}=1\right]
\end{aligned}
$$

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=
$$

(b.) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{(2 x}=\frac{11}{2} \lim _{x \rightarrow 0} \frac{5 \sin 5 x}{5 x}=\frac{5}{2} \lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}=\frac{5}{2}$
(c.) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{4 \sin 4 x}{4 x} \cdot \frac{3 x}{3 \sin 3 x}=\lim _{x \rightarrow 0} \frac{4 \sin 4 x}{4 x} \cdot \lim _{x \rightarrow 0} \frac{3 x}{3 \sin 3 x}$

$$
=\frac{4}{3} \lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x} \lim _{x \rightarrow 0} \frac{3 x^{\prime}}{\sin 3 x}=\frac{4}{3}
$$

(d.) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{\sin 2 x}=\lim _{x \rightarrow 0} \frac{3 \tan 3 x}{3 x} \cdot \frac{2 x}{2 \sin 2 x}=\lim _{x \rightarrow 0} \frac{3 \tan 3 x}{3 x} \cdot \lim _{x \rightarrow 0} \frac{2 x}{2 \sin 2 x}$

$$
=\frac{3}{2} \lim _{x \rightarrow 0} \frac{\tan 3 x}{3 x} \cdot \lim _{x \rightarrow \infty} \frac{72 x}{\sin 2 x}=\frac{3}{2}
$$

$$
b=(3)(2) \quad \sin 2 x=2 \sin x \cos x
$$

(e.) $\begin{aligned} \lim _{x \rightarrow 0} & \frac{\sin b x}{\sin 3 x} \\ & =\lim _{x \rightarrow 0} \frac{2 \sin (3 x) \cos (3 x)}{\sin (3 x)}=\lim _{x \rightarrow 0} 2 \cos (3 x)=2\end{aligned}$
$\frac{d}{d x}$ - derivative with respect to $x$

## Derivatives

$$
\begin{aligned}
& \text { (a.) } \begin{aligned}
y & =\cos x-2 \tan x \\
y^{\prime}= & (\cos x-2 \tan x)^{\prime}=(\cos x)^{\prime}-2(\tan x)^{\prime} \\
& =-\sin x-2 \sec ^{2} x
\end{aligned}
\end{aligned}
$$

(b.) $y=2 x(\sqrt{x}-\cot x)=2 x \sqrt{x}-2 x \cot x=2 x^{3 / 2}-2 x \cot x$

$$
\begin{aligned}
y^{\prime}= & \left(2 x^{3 / 2}-2 x \cot x\right)^{\prime}=2\left(x^{3 / 2}\right)^{\prime}-2(x \cot x)^{\prime} \\
& =2\left(\frac{3}{2}\right) x^{3 / 2-1}-2\left((x)^{\prime} \cot x+x(\cot x)^{\prime}\right) \\
& =3 x^{1 / 2}-2\left(\cot x-x \csc ^{2} x\right)
\end{aligned}
$$

(c.) $y=x \csc x=\frac{x}{\sin x}$

$$
\begin{aligned}
x \csc x & y^{\prime}=\left(\frac{x}{\sin x}\right)^{\prime}=\frac{(x)^{\prime} \sin x-x(\sin x)^{\prime}}{\sin ^{2} x}=\sin x \\
y^{\prime}=(x \csc x)^{\prime} & =(x)^{\prime} \csc x+x(\csc x)^{\prime} \\
& =\operatorname{crc} x-x \csc x \cot x
\end{aligned}
$$

$$
\frac{\sin x-x \cos x}{\sin ^{2} x}
$$

Example 3. Find the points on the curve $y=\frac{\cos x}{2+\sin x}$ at which the tangent is horizontal. $(0 \leqslant x \leqslant 2 \pi)$

$$
\begin{aligned}
& \text { horizontal tangent } \rightarrow \text { angle is zero } \rightarrow \text { slope is zero } \\
& \operatorname{slope}=y^{\prime}=\left(\frac{\cos x}{2+\sin x}\right)^{\prime}=\frac{(\cos x)^{\prime}(2+\sin x)-(\cos x)(2+\sin x)^{\prime}}{(2+\sin x)^{2}}=0 \\
& 2+\sin x \text { is never zero } \\
& (-\sin x)(2+\sin x)-\cos x(\cos x)=0 \\
& -2 \sin x-\sin ^{2} x-\cos ^{2} x=0 \\
& -2 \sin x-1=0 \Rightarrow \sin x=-\frac{1}{2} \\
& \begin{aligned}
x & =\pi+\frac{\pi}{6}, \quad x \\
1 & =2 \pi-\frac{\pi}{6}
\end{aligned} \\
& y\left(\frac{7 \pi}{6}\right)=\frac{\cos \frac{7 \pi}{6}}{2+\sin \frac{7 \pi}{6}}=\frac{\frac{-\sqrt{3}}{2}}{2-\frac{1}{2}}=\frac{\frac{-\sqrt{3}}{2}}{\frac{3}{2}}=-\frac{7 \pi}{6}, x_{2}=\frac{11 \pi}{6} \\
& y\left(\frac{11 \pi}{6}\right)=\frac{\cos \frac{n \pi}{6}}{2+\sin \frac{11 \pi}{6}}=\frac{\frac{\sqrt{3}}{2}}{2-\frac{1}{2}}=\frac{\frac{\sqrt{3}}{2}}{3 / 2}=\frac{1}{\sqrt{3}} \\
& \left(\frac{7 \pi}{6},-\frac{1}{\sqrt{3}}\right) \text { and }\left(\frac{11 \pi}{6}, \frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

