1. Quiz 4 over 3.2 and 3.4
2. HW over $3.2,3.4,3.5,3,6,3.7$ due Wednesday, Dot. 12, 11:550,
3. Testy will be retcerned during recitations
4. Retest on Friday ot ot 7 7-9 Min BLOC 162

If the derivatives $g^{\prime}(x)$ and $f^{\prime}(g(x))$ both exist, and $F=f \circ g$ is the composite function defined by $F(x)=f(g(x))$, then $F^{\prime}(x)$ exists an is given by the product
$[f(g(x))]^{\prime}=F(x)=f^{\prime}(g(x)) g^{\prime}(x) \quad \begin{aligned} & f \text { is the outer function } \\ & g \text { is the inner function }\end{aligned}$
Example 1. Suppose that $F(x)=f(g(x))$, where $g(2)=5, g^{\prime}(2)=4, f(2)=3, f^{\prime}(2)=-2$, and $f^{\prime}(5)=11$. Find $F^{\prime}(2)$.

$$
\begin{aligned}
F^{\prime}(x) & =f^{\prime}(g(x)) g^{\prime}(x) \\
F^{\prime}(2) & =\underbrace{f^{\prime}(g(2))}_{5} \underbrace{g^{\prime}(2)}_{4} \\
& =\underbrace{f^{\prime}(5)}_{11}(4) \\
& =(11)(4)=44
\end{aligned}
$$

If n is any real number and $u=g(x)$ is differentiable, then

$$
\frac{d}{d x}[g(x)]^{n}=n[g(x)]^{n-1} g^{\prime}(x) \quad \text { General Power Rule }
$$

$$
f(x)=x^{2}+3 x-2, \quad g(x)=\sin x
$$

$f(g(x))=\sin ^{2} x+3 \sin x-2 \quad$ (peng $\sin x$ for x into the equation of f)

$$
g(f(x))=\sin \left(x^{2}+3 x-2\right)
$$

$f(x)=\tan x, \quad g(x)=\sqrt{x}$

$$
\begin{aligned}
& f(g(x))=\tan (\sqrt{x}) \\
& g(f(x))=\sqrt{\tan x}
\end{aligned}
$$

Example 2. Find the derivative of each function

1. $y=\underbrace{\sec }_{\text {outer }} \overbrace{2 x}^{\text {Inner }} \quad(\sec x)^{\prime}=\sec x \tan x$

$$
\begin{aligned}
y^{\prime} & =\sec (2 x) \tan (2 x)(2 x)^{\prime} \\
& =2 \sec (2 x) \tan (2 x)
\end{aligned}
$$

2. $y=\overbrace{\sin }^{\text {outer }} \underbrace{x^{2}}_{\text {inner }})$

$$
\begin{aligned}
y^{\prime} & =\cos \left(x^{2}\right)\left(x^{2}\right)^{\prime} \\
& =2 x \cos \left(x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } y=(\overbrace{1+\cos ^{2} x}^{\text {inner }})^{\text {outer }} \text { Do the General Power Rule first. } \\
& \text { Do the General outer } \\
& y^{\prime}=6\left(1+\cos ^{2} x\right)^{5}\left(1+\frac{\cos ^{2} 2 x}{\sin h e r}\right) \\
& =6\left(1+\cos ^{2} x\right)^{5}(2 \cos x)(\cos x)^{\prime} \\
& =6\left(1+\cos ^{2} x\right)^{5}(2 \cos x)(-\sin x) \\
& \text { 4. } y=\left(1+\sqrt{x^{2}+2}\right)^{3} \\
& \text { Ceneral Power Rule firse: } \\
& y^{\prime}=3\left(1+\sqrt{x^{2}+2}\right)^{2}\left(1+\sqrt{x^{2}+2}\right)^{\prime} \\
& =3\left(1+\sqrt{x^{2}+2}\right)^{2}\left(\left(x^{2}+2\right)^{1 / 2}\right) \\
& \text { General Power Rule again } \\
& =3\left(1+\sqrt{x^{2}+2}\right)^{2} \frac{1}{2}\left(x^{2}+2\right)^{\frac{1}{2}-1}\left(x^{2}+2\right)^{1} \\
& \begin{array}{l}
=\frac{3}{x}\left(1+\sqrt{x^{2}+2}\right)^{2}\left(x^{2}+2\right)^{-1 / 2}(2 x) \\
=3\left(1+\sqrt{x^{2}+2}\right)^{2}\left(x^{2}+2\right)^{-1 / 2}(x)
\end{array} \\
& \text { 5. } y=\sqrt[4]{\frac{t^{3}+1}{t^{3}-1}}=\underbrace{\left.\frac{\left(t^{3}+1\right.}{t^{3}-1}\right)^{1 / 4}}_{\text {General }}=\frac{\left(t^{3}+1\right)^{1 / 4}}{t^{3}-1 / 4}=\left(t^{3}+1\right)^{1 / 4}\left(t^{3}-1\right)^{-1 / 4} \\
& y^{\prime}=\frac{1}{4}\left(\frac{t^{3}+1}{t^{3}-1}\right)^{1 / 4-1}\left(\frac{t^{3}+1}{t^{3}-1}\right)^{\prime} \\
& =\frac{1}{4}\left(\frac{t^{3}+1}{t^{3}-1}\right)^{-3 / 4} \frac{\left(t^{3}+1\right)^{1}\left(t^{3}-1\right)-\left(t^{3}-1\right)^{(}\left(t^{3}+1\right)}{\left(t^{3}-1\right)^{2}} \\
& =\frac{1}{4}\left(\frac{t^{3}+1}{t^{3}-1}\right)^{-3 / 4} \frac{3 t^{2}\left(t^{3}-1\right)-3 t^{2}\left(t^{3}+1\right)}{\left(t^{3}-1\right)^{2}} \\
& =\frac{1}{4}\left(\frac{t^{3}+1}{t^{3}-1}\right)^{-3 / 4} \frac{3 t^{2} t^{3}-3 t^{2}-3 t^{2} t^{3}-3 t^{2}}{\left(t^{3}-1\right)^{2}} \\
& =\frac{1}{4}\left(\frac{t^{3}+1}{t^{3}-1}\right)^{-3 / 4} \frac{-6 t^{2}}{\left(t^{3}-1\right)^{2}}=-\frac{3 t^{2}}{2} \frac{\left(t^{3}+1\right)^{-3 / 4}}{\left(t^{3}-1\right)^{2-3 / 4}} \\
& =-\frac{3 t^{2}}{2} \frac{\left(t^{3}+1\right)^{-3 / 4}}{\left(t^{3}-1\right) 5 / 4}=-\frac{3 t^{2}}{2\left(t^{3}+1\right)^{3 / 4}\left(t^{3}-1\right)^{5 / 4}}
\end{aligned}
$$

6. $y=\sin ^{2}(\cos 4 x)$ General Power Rule First:

$$
y^{\prime}=2 \sin (\cos 4 x)[\underset{\text { outer }}{\sin }(\cos 4 x)]^{\prime}
$$

$=2 \sin (\cos 4 x) \cos (\cos 4 x)[\underbrace{\cos 4 x^{2}}_{\text {outer }}]^{\prime}$
$=2 \sin (\cos 4 x) \cos (\cos 4 x)(-\sin 4 x) \underbrace{(4 x)^{\prime}}_{4}$
$=-8 \sin 4 x[\sin (\cos 4 x)][\cos (\cos 4 x)]$

Example 3. Find the equation of the tangent line to the curve $y=\frac{8}{\sqrt{4+3 x}}$ at the point
$(4,2)$.

$$
\begin{gathered}
y=\overbrace{f^{\prime}(a)\left(x-\vec{a}^{4}\right)+\overbrace{f(a)}^{2} \quad \text { tangent line to } y=f(x) @(a, f(a))}^{f(x)=8(4+3 x)^{-1 / 2}, \quad a=4, f(a)=2} \begin{aligned}
& f^{\prime}(x)= 8\left(-\frac{1}{2}\right)(4+3 x)^{-1 / 2-1}(4+3 x)^{\prime} \\
&=-4(4+3 x)^{-3 / 2}(3)=\frac{-12}{(4+3 x)^{3 / 2}} \\
& f^{\prime}(4)=\frac{-12}{(4+4 / 3))^{3 / 2}}=-\frac{12}{16^{3 / 2}}=-\frac{12}{64}=-\frac{3}{16} \\
& y=-\frac{3}{16}(x-4)+2
\end{aligned}
\end{gathered}
$$

