RETEST 10/7, 7-9 PM BLOC 102 Bring the gray Heantron that

Definition. The derivative of a vector function $\vec{r}(t)$ at a number a, denoted by $\vec{r}^{\prime}(a)$, is

$$
\vec{r}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\vec{r}(a+h)-\vec{r}(a)}{h}=\lim _{t \rightarrow a} \frac{\vec{r}(t)-\vec{r}(a)}{t-a}
$$

if the limits exist.
If $\vec{r}(t)=<x(t), y(t)>$ is a vector function, then

$$
\vec{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}=\left\langle\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}, \lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}\right\rangle=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\vec{r}^{\prime}(t)
$$

if both $x^{\prime}(t)$ and $y^{\prime}(t)$ exist.
Example 1. Find the domain and the derivative of the vector function $\vec{r}(t)=\left\langle t^{2}-4, \sqrt{t-4}\right\rangle=\left\langle t^{2}-4,(t-4)^{2 / 2}\right.$, Domain: $t-4 \geq 0 \rightarrow t \geqslant 4$

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\left\langle\left(t^{2}-4\right)^{\prime},\left[(t-4)^{1 / 2}\right]^{\prime}\right\rangle \\
& =\left\langle 2 t, \frac{1}{2}(t-4)^{-1 / 2}\right\rangle
\end{aligned}
$$

Find the domain of the function $\vec{r}(t)=\left\langle\frac{1}{t+3}, \sqrt{t+4}\right\rangle$

Example 2. Find a tangent vector of unit length, for the given by $\vec{r}(t)=2 \sin t \vec{\imath}+3 \cos t \vec{\jmath}$ at the point where $t=\pi / 6$.
curve
$\vec{r}(t)=\langle 2 \sin t, 3 \cos t\rangle$
tangent rector $\vec{V}(t)=\vec{r}^{\prime}(t)=\left\langle(2 \sin t),(3 \cos t)^{\prime}\right\rangle$

$$
=\langle 2 \cos t,-3 \sin t\rangle
$$

$$
\vec{V}\left(\frac{\pi}{6}\right)=\left\langle 2 \cos \frac{\pi}{6},-3 \sin \frac{\pi}{6}\right\rangle
$$

$$
=\left\langle 2 \frac{\sqrt{3}}{2},-\frac{3}{2}\right\rangle=\left\langle\sqrt{3},-\frac{3}{2}\right\rangle
$$

$$
\left|\vec{v}\left(\frac{\pi}{6}\right)\right|=\sqrt{3+\frac{9}{4}}=\frac{\sqrt{21}}{2}
$$

$$
\vec{u}=\frac{\vec{v}\left(\frac{\pi}{6}\right)}{\left|\vec{v}\left(\frac{\pi}{6}\right)\right|}=\frac{\left\langle\sqrt{3},-\frac{3}{2}\right\rangle}{\frac{\sqrt{21}}{2}}=\frac{2}{\sqrt{21}}\left\langle\sqrt{3},-\frac{3}{2}\right\rangle=\left\langle\frac{2 \sqrt{3}}{\sqrt{21}}, \frac{-3}{\sqrt{2 \mid}}\right.
$$

$$
=\left\langle\frac{2}{\sqrt{7}},-\frac{3}{\sqrt{21}}\right\rangle
$$

Definition. If $\vec{r}(t)=\langle x(t), y(t)>$ is a vector function representing the position of a particle at time t, then
velocity at time t is
speed at time t is

$$
\begin{aligned}
& \vec{v}(t)=\vec{r}^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t)> \\
& s=|\vec{v}(t)|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}
\end{aligned}
$$

Example 3. The vector function $\vec{r}(t)=<t, 25 t-5 t^{2}>$ represents the position of a particle at time t. Find the velocity and the speed at $t=1$.

$$
\begin{aligned}
\vec{v}(t)=\vec{r}^{\prime}(t) & =\left\langle t^{\prime}, \quad\left(25 t-5 t^{2}\right)^{\prime}\right\rangle \\
& =\langle 1,25-10 t\rangle \\
\vec{v}(1) & =\langle 1,25-10\rangle=\sqrt{\langle 1,15\rangle} \\
S & =|\vec{v}(1)|=\sqrt{1+15^{2}}=\sqrt{1+225}=\sqrt{226}
\end{aligned}
$$

