Section 3.8 Higher derivatives

$$
\begin{gathered}
\frac{d^{2} f}{d x^{2}}=f^{\prime \prime}(x)=\left[f^{\prime}(x)\right]^{\prime} \text { the and order derivative } \\
\frac{d^{3} f}{d x^{3}}=f^{\prime \prime \prime}(x)=\left[f^{\prime \prime}(x)\right]^{\prime} \text { the 3rd derivative } \\
\frac{d^{n} f}{d x^{n}}=f^{(n)}(x)=\left[f^{(n-1)}(x)\right]^{\prime} \text { the } n \text {-th derivative }
\end{gathered}
$$

Example 1. Find $f^{\prime \prime}(x)$ for the function $f(x)=\tan ^{3}(2 x-1)$.

$$
\begin{aligned}
f^{\prime}(x) & =3 \tan ^{2}(2 x-1)[\tan (2 x-1)]^{\prime} \\
& =3 \tan ^{2}(2 x-1) \sec ^{2}(2 x-1)(2) \\
& =6 \tan ^{2}(2 x-1) \sec ^{2}(2 x-1)
\end{aligned}
$$

$f^{\prime \prime}=6\left(\tan ^{2}(2 x-1) \sec ^{2}(2 x-1)\right)^{\prime}$
$=6\left(\left(\tan ^{2}(2 x-1)\right)^{\prime} \sec ^{2}(2 x-1)+\tan ^{2}(2 x-1)\left(\sec ^{2}(2 x-1)\right)^{\prime}\right)$
$=6\left[(2) \tan (2 x-1)(\tan (2 x-1))^{\prime} \sec ^{2}(2 x-1)+\tan ^{2}(2 x-1)(2) \sec (2 x-1)(\sec (2 x-1))^{\prime}\right]$
$=12\left[\tan (2 x-1) 2 \sec ^{2}(2 x-1) \sec ^{2}(2 x-1)+\tan ^{2}(2 x-1) \sec (2 x-1) \sec (2 x-1) \tan (2 x-1)(2)\right]$

Example 2. Find $\frac{d^{3}}{d x^{3}}\left(\frac{1-x}{1+x}\right)$
$\frac{1-x}{1+x}$ improper fraction (power of x onthtop \geq power of of x on the bottom) separate the whole part of the fraction. $\frac{1-x}{x+1}$ need $1+x$ on the top
$=\frac{=[(1-x)+(x+1)]-(x+1)}{x+1}=\frac{-(x+1)}{x+1}+\frac{1-x+(x+1)}{x+1}=-1+\frac{1-x+x+1}{x+1}$ $=-1+\frac{2}{x+1}=-1+2(x+1)^{-1}$

$$
\begin{aligned}
& f(x)=-1+2(x+1)^{-1} \\
& f^{\prime}(x)=-2(x+1)^{-1-1}=-2(x+1)^{-2} \\
& f^{\prime \prime}(x)=-2(-2)(x+1)^{-2-1}=4(x+1)^{-3} \\
& f^{\prime \prime}(x)=-12(x+1)^{-4}
\end{aligned}
$$

Example 3. Find a formula for $f^{(n)}(x)$ for the following functions:
(a.) $f(x)=x^{4}-3 x^{3}+16 x$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-9 x^{2}+16 \\
& f^{\prime \prime}(x)=12 x^{2}-18 x \\
& f^{\prime \prime \prime}(x)=24 x-18 \\
& f^{\prime \prime \prime}(x)=24=4(3)(2)(1) \\
& f^{v}(x)=0
\end{aligned}
$$

(b.) $\begin{aligned} f(x)=\sqrt{x} & =x^{1 / 2} \\ f^{\prime}(x)= & \left.=\frac{1}{2}\right) x^{-1 / 2}\end{aligned}$

$$
\begin{array}{lll}
f^{\prime}(x)=\left(\frac{1}{2}\right) x^{-1 / 2} & n=2(2)-3 \\
f^{\prime \prime}(x)=\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right) x^{-1 / 2-1}=\frac{1}{2}\left(-\frac{1}{2}\right) x^{-3 / 2} & n=2 & \text { (1)(1) } \\
f^{\prime \prime}(x)=\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) x^{-5 / 2} & n=3 & \text { (1) }(3)(1)-3 \\
n=4 & \text { (1)(3)(5)(5) }
\end{array}
$$

$$
f^{(n)}(x)=\frac{1}{2}(-1)^{n+1} \frac{1(3)(5) \cdots(2 n-3)}{2^{n-1}} x^{-(2 n-1) / 2}
$$

$$
n=4
$$

(c.) $f(x)=x^{n}-\begin{gathered}\text { polynomial } \\ \text { of degree } n\end{gathered}$

$$
\begin{aligned}
& \quad n=4 \\
& f^{\prime \prime}(x)=-\frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)\left(\frac{2(4)-3)}{} x^{-(2(4)-1) / 2}\right. \\
& \text { ynonial } \\
& =-\frac{1}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{3}{2}\right)\left(\frac{5}{2}\right) x^{-7 / 2}
\end{aligned}
$$

$$
f^{(n)}(x)=n(n-1)(n-2) \cdots \cdot(2)(1)=n!
$$

(c.) $f(x)=\frac{1}{(1-x)^{2}}=(1-x)^{-2}$

$$
\left.\begin{array}{rl|l}
=(1-x) \\
f^{\prime}(x) & =-2(1-x)^{-2-1}(1-x)^{\prime} \\
= & =-2(1-x)^{-3}(-1) & \begin{aligned}
f^{\prime \prime}(x) & =2(-3)(1-x)^{-1}(-1) \\
& =2(3)(1-x)^{-4}
\end{aligned} \\
f^{\prime}(x) & =2(1-x)^{-3}
\end{array} \right\rvert\, \begin{aligned}
f^{\prime \prime}(x) & =2(3)(-4)(1-x)^{-5}(-1) \\
& =2(3)(4)(1-x)^{-5}
\end{aligned}
$$

$$
\begin{gathered}
f^{(n)}(x)=2(3)(4) \ldots(n+1)(1-x)^{-(n+2)} \\
f^{(n)}(x)=(n+1)!(1-x)^{-(n+2)}
\end{gathered}
$$

Example 4. Find $f^{(25)}(x)$ if $f(x)=x \sin x$.

$$
\begin{array}{rlrl}
f^{(25)}(x) \text { it } f(x) & =x \sin x . & f^{(25)}(x)=25 \sin x+x \cos x \\
f^{\prime}(x) & =\sin x+x \cos x & \\
f^{\prime \prime}(x) & =\cos x+\cos x+x(-\sin x) & & f^{(35)}(x) \gamma=-35 \sin x-x \cos x \\
& =2 \cos x-x \sin x & & \\
f^{\prime \prime \prime}(x) & =-2 \sin x-(\sin x+x \cos x) & \\
& =-3 \sin x-x \cos x & 8(4)+3 \\
f^{\prime \prime}(x) & =-3 \cos x-(\cos x-x \sin x) & \\
& =-4 \cos x+x \sin x & & \\
f^{\prime \prime}(x) & =4 \sin x+\sin x+x \cos x & & \\
& =5 \sin x+x \cos x & 5.1+1 &
\end{array}
$$

> 10/12: Quiz over 3.4-3.7

Acceleration.

- due date for the homework over

Let $s=s(t)$ be the position function of an object that moves in a straight line.
The instantaneous rate of change of velocity with respect to time is called acceleration $a(t)$ of the object. Thus, the acceleration function is the derivative of the velocity function. Therefore

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t) \text {. }
$$

Example 5. The equation of motion of a particle is $s(t)=2 t^{3}-7 t^{2}+4 t+1$, where s is measured in meters and t in seconds. Find the acceleration as a function of time. What is acceleration after 1 s ?

$$
\begin{aligned}
& \qquad \begin{aligned}
& s(t)= 2 t^{3}-7 t^{2}+4 t+1 \\
& \text { velocity: } v(t)= s^{\prime}(t)=6 t^{2}-14 t+4 \\
& \text { acceleration: } \quad a(t)=v^{\prime}(t)=12 t-14 \\
& a(1)=12-14=-2 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
\end{aligned}
$$

For the vector function $\vec{r}(t)=\langle x(t), y(t)\rangle$

$$
\begin{gathered}
\vec{r}^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t)> \\
\vec{r}^{\prime \prime}(t)=\left[\vec{r}^{\prime}(t)\right]^{\prime}=<x^{\prime \prime}(t), y^{\prime \prime}(t)>
\end{gathered}
$$

If $\vec{r}(t)=\langle x(t), y(t)>$ represents the position of an object then the acceleration vector is

$$
\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)=<x^{\prime \prime}(t), y^{\prime \prime}(t)>
$$

Example 5. Find the acceleration at $t=2$ if $\vec{r}(t)=\sqrt{t^{2}+5} \vec{\imath}+t \vec{\jmath}$.

$$
\begin{aligned}
& \vec{r}(t)=\left\langle\sqrt{t^{2}+5}, t\right\rangle=\left\langle\left(t^{2}+5\right)^{1 / 2}, t\right\rangle \\
& \vec{r}^{\prime}(t)=\left\langle\frac{1}{2}\left(t^{2}+5\right)^{-1 / 2}\left(t^{2}+5\right)^{\prime}, 1\right\rangle \\
& =\left\langle\frac{1}{2}\left(t^{2}+5\right)^{-1 / 2}(2 t), 1\right\rangle \\
& =\left\langle t\left(t^{2}+5\right)^{-1 / 2}, 1\right\rangle \\
& \text { acceleration } \vec{a}(t)=\vec{r}^{\prime \prime}(t)=\left\langle(t)^{\prime}\left(t^{2}+5\right)^{-1 / 2}+t\left[\left(t^{2}+5\right)^{-1 / 2}\right]^{\prime}, 0\right\rangle \\
& \text { vector } \\
& =\left\langle\left(t^{2}+5\right)^{-1 / 2}+t\left(-\frac{1}{2}\right)\left(t^{2}+5\right)^{-3 / 2}\left(t^{2}+5\right)^{\prime}, 0\right\rangle \\
& =\left\langle\left(t^{2}+5\right)^{-1 / 2}-\frac{t}{7}\left(t^{2}+5\right)^{-3 / 2}(2 t), 0\right\rangle \\
& =\left\langle\left(t^{2}+5\right)^{-1 / 2}-t^{2}\left(t^{2}+5\right)^{-3 / 2}, 0\right\rangle \\
& \vec{a}(2)=\left\langle\left(2^{2}+5\right)^{-1 / 2}-4\left(2^{2}+5\right)^{-3 / 2}, 0\right\rangle \\
& =\left\langle\frac{1}{3}-\frac{4}{9 \sqrt{9}}, 0\right\rangle \\
& =\left\langle\frac{1}{3}-\frac{4}{27}, 0\right\rangle=\left\langle\frac{9-4}{27}, 0\right\rangle=\left\langle\frac{5}{27}, 0\right\rangle \\
& \text { acceleration } \\
& a=|\vec{a}(2)|=\frac{5}{27}
\end{aligned}
$$

Implicit second derivative.

Example 6. Find $\frac{d^{2} y}{d x^{2}}$ if $x^{2}+6 x y+y^{2}=8$ product rule

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+6 x y+y^{2}\right)=\frac{d}{d x}(8) \\
& 2 x+6\left[\frac{d(x)}{d x} y+x \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=0
\end{aligned} 2
$$

$$
\begin{aligned}
& x+3\left(y+x \frac{d y}{d x}\right)+y \frac{d y}{d x}=0 \\
& x+3 y+3 x \frac{d y}{d x}+y \frac{d y}{d x}=0 \quad \text { solve for } \frac{d y}{d x} \\
& (3 x+y) \frac{d y}{d x}=-3 y-x \\
& \frac{d y}{d x}=-\frac{x+3 y}{3 x+y} \\
& \begin{aligned}
\frac{d^{2} y}{d x^{2}} & =-\frac{d}{d x}\left(\frac{x+3 y}{3 x+y}\right)
\end{aligned}=-\frac{\frac{d}{d x}(x+3 y)(3 x+y)-(x+3 y) \frac{d(3 x+y)}{d x}}{(3 x+y)^{2}} \\
& =-\frac{\left(1+\frac{3 d y}{d x}\right)(3 x+y)-(x+3 y)\left(3+\frac{d y}{d x}\right)}{(3 x+y)^{2}} \\
& =-\frac{3 x+y+9 x \frac{d y}{d x}+3 y \frac{d y}{d x}-3 x-x \frac{1 y}{d x}-9 y-3 y \frac{d y}{d x}}{(3 x+y)^{2}} \\
& =-\frac{8 x \frac{d y}{d x}-8 y}{(3 x+y)^{2}}=+8 \cdot \frac{+x \frac{x+3 y}{3 x+y}+y}{(3 x+y)^{2}}=8 \frac{x(x+3 y)+y(3 x+y)}{(3 x+y} \\
& =8 \frac{x^{2}+3 x y+3 x y+y^{2}}{(3 x+y)^{3}}=8 \frac{x^{2}+6 x y+y^{2}}{(3 x+y)^{3}} \\
& \text { Very original equation: } x^{2}+6 x y+y^{2}=8 \\
& =8 \frac{8}{(3 x+y)^{3}}=\frac{64}{(3 x+y)^{3}}
\end{aligned}
$$

