Section 3.9 Slopes and tangents to parametric curves

Suppose that the curve C is given by parametric equations $x=x(t), y=y(t)$, then tangent rector

$$
\begin{aligned}
& \text { slope } \\
& \text { of the tangent line } \\
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{y^{\prime}(t)}{x^{\prime}(t)}
\end{aligned}
$$

Example 1. Find an equation of the tangent to the curve $x(t)=t \sin t, y(t)=t \cos t$ at the point corresponding to $t=\pi$.

$$
\begin{aligned}
& \text { Equation } y= \\
&\left.\begin{array}{rl}
\text { equaling to } t=\pi . & \frac{d y}{d x}(\pi)(x-x(\pi))+y(\pi) \\
& x(\pi)=\pi \sin \pi=0, \quad y(\pi)=\pi \cos ^{0} \pi
\end{array}\right)=-\pi \\
& \frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{[t \cos t]^{\prime}}{[t \sin t]^{\prime}}=\frac{\cos t-t \sin t}{\sin t+t \cos t} \\
& \frac{d y}{d x}(\pi)=\frac{\cos \pi-\pi \sin \pi}{\sin \pi+\pi \cos \pi}=\frac{-1}{-\pi}=\frac{1}{\pi} \\
& y=\frac{1}{\pi(x-0)-\pi} \\
& y=\frac{x}{\pi}-\pi
\end{aligned}
$$

Example 2. Find the points ont curve $x=t\left(t^{3}-3\right), y=3\left(t^{3}-3\right)$, where the tangent is vertical or horizontal.

$$
\begin{gathered}
x(t)=t^{2}-3 t \\
y(t)=3 t^{3}-9
\end{gathered}
$$

slope of a tangent line $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{9 t^{2}}{4 t^{3}-3}$
horizontal tangent \rightarrow slope is zero $\rightarrow \begin{aligned} & y^{\prime}(t)=0 \\ & q t^{2}=0,\end{aligned}$

$$
q t^{2}=0, \quad t=0
$$

point corresponding to $t=0: x(0)=0, y(0)=-9$
horizontal tangent @ $(0,-9)$
$\begin{aligned} & \text { vertical tangent is when } x^{\prime}(t)=0 \text { or } 4 t^{3}-3=0 \\ & t=\sqrt[3]{\frac{3}{4}}\end{aligned}$
Point corresponding to $t=\sqrt[3]{\frac{3}{4}}$:
$x\left(\sqrt[3]{\frac{3}{4}}\right)=\sqrt[3]{\frac{3}{4}}\left(\left(\sqrt[3]{\frac{3}{4}}\right)^{3}-3\right)=\sqrt[3]{\frac{3}{4}}\left(\frac{3}{4}-3\right)=\sqrt[3]{\frac{3}{4}} \frac{3-12}{4}=-\frac{9}{4}\left(\sqrt[3]{\frac{3}{4}}\right)$

$$
\begin{aligned}
& y\left(\sqrt[3]{\frac{3}{4}}\right)=3\left(\left(\sqrt[3]{\frac{3}{4}}\right)^{3}-3\right)=3\left(\frac{3}{4}-3\right)=-\frac{27}{4} \\
& \text { vertical tangent } Q\left(-\frac{9}{4} \sqrt[3]{\frac{3}{4}},-\frac{27}{4}\right)
\end{aligned}
$$

Example 3. At what points on the curve $x=t^{3}+4 t, y=6 t^{2}$ is the tangent parallel to the line with the equations $\underbrace{x=-7 t, y=12 t-}_{\text {Slope }=-\frac{12}{7}}$?

Find the points on the curve where the slope

$$
\begin{aligned}
& \text { of the tangent is }-\frac{12}{7} \\
& \frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\left(6 t^{2}\right)^{\prime}}{\left(t^{3}+4 t\right)^{\prime}}=\frac{12 t}{3 t^{2}+4}=-\frac{12}{7} \\
& 7 t=-\left(3 t^{2}+4\right) \\
& \begin{array}{l}
3 t^{2}+7 t+4=0 \\
t_{1}=\frac{-7+\sqrt{49-4(4)(3)}}{6}=\frac{-7+1}{6}=-1
\end{array} \\
& t_{2}=\frac{-7-1}{6}=-\frac{8}{6}=-\frac{4}{3} \\
& -\frac{64+9(16)}{27} \\
& t=-1 \text { : } \\
& x(-1)=(-1)^{3}+4(-1)=-5 \\
& y(-1)=6(-1)^{2}=6 \\
& (-5,6) \\
& \begin{array}{l}
t=-\frac{4}{3} \\
x\left(-\frac{4}{3}\right)=\left(-\frac{4}{3}\right)^{3}+4\left(-\frac{4}{3}\right)=-\overbrace{-\frac{64}{27}-\frac{16}{3}}^{27}
\end{array} \\
& \begin{array}{l}
y\left(-\frac{4}{3}\right)=6\left(-\frac{4}{3}\right)^{2}=\frac{6(16)}{9}=\frac{208}{27} \\
3
\end{array} \\
& \left(-\frac{208}{27}, \frac{32}{3}\right)
\end{aligned}
$$

