$$
\begin{aligned}
& \text { Quiz } 6 \text { over } 3.8-3.10 \\
& \text { HW over } 3.8-3.10 \text { is due } 10 / 19,11: 55 \mathrm{PM} \\
& \text { HW over } 3.11,4.1 \text { is due } 10 / 26,11: 55 \mathrm{PM}
\end{aligned}
$$

Chapter 4. Inverse functions: exponential, logarithmic, and inverse trigonometric functions
Section 4.1 Exponential functions and their derivatives
An exponential function is a function of the form

$$
f(x)=a^{x}, \quad a>0, \quad a \neq 1
$$

where a is a positive constant. It is defined in five stages:

- If $x=n$, a positive integer, then

$$
a^{n}=\underbrace{a \cdot a \cdots \cdots a}_{n \text { times }}
$$

- $a^{0}=1$
- If $x=-n, n$ is a positive integer, then

$$
a^{-n}=\frac{1}{a^{n}}
$$

- If $x=\frac{p}{q}$ is a rational number, where p and q are integers and $q>0$, then

$$
a^{p / q}=\sqrt[q]{a^{p}}
$$

- If x is an irrational number, then

$$
a^{x}=\lim _{r \rightarrow x} a^{r} \quad r \text { rational }
$$

$$
\begin{aligned}
& y=a^{x}, 0<a<1 \\
& \text { - } \lim _{x \rightarrow \infty} a^{x}=0 \\
& \text { - } \lim _{x \rightarrow-\infty} a^{x}=\infty
\end{aligned} \quad \begin{aligned}
& y=a^{x}, a>1 \\
& \text { • increasing on }(-\infty, \infty) \\
& \lim _{x \rightarrow \infty} a^{x}=\infty \\
& \cdot \lim _{x \rightarrow-\infty} a^{x}=0
\end{aligned}
$$

- Domain $(-\infty, \infty)$
- Range $(0, \infty)$

Theorem. If $a>0$ and $a \neq 1$, then $f(x)=a^{x}$ is continuous function with domain $(-\infty, \infty)$ and range $(0, \infty)$.

- If $0<a<1, f(x)=a^{x}$ is decreasing function
- if $a>1, f(x)=a^{x}$ is increasing function
- If $a, b>0$ and x, y are reals, then

1. $a^{x+y}=a^{x} a^{y}$	2. $a^{x-y}=\frac{a^{x}}{a^{y}}$	3. $\left(a^{x}\right)^{y}=a^{x y}$	4. $(a b)^{x}=a^{x} b^{x}$

- If $0<a<1,\left|\lim _{x \rightarrow-\infty} a^{x}=\infty\right| \lim _{x \rightarrow \infty} a^{x}=0$
- If $a>1, \varlimsup_{x \rightarrow-\infty} a^{x}=0, \lim _{x \rightarrow \infty} a^{x}=\infty$

Example 1. Find each limit.

1. $\lim _{x \rightarrow \infty}(0.1)^{x}=0 \quad \lim _{x \rightarrow-\infty}(.1)^{x}=\infty$

2. $\lim _{x \rightarrow-\infty} \pi^{x}=0$
$\lim _{x \rightarrow \infty} \pi^{x}=\infty$

3. $\lim _{x \rightarrow-\infty} \frac{2^{3 x}-2^{-3 x}}{2^{3 x}+2^{-3 x}}$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} 2^{3 x}=\lim _{x \rightarrow-\infty}\left(2^{3}\right)^{x}=\lim _{x \rightarrow-\infty} 8^{x}=0 \\
& \lim _{x \rightarrow-\infty} 2^{-3 x}= \lim _{x \rightarrow-\infty}\left(2^{-3}\right)^{x}=\lim _{x \rightarrow-\infty}\left(\frac{1}{8}\right)^{x}=\infty \quad \text { (get rid of it). } \\
&=\lim _{x \rightarrow-\infty} \frac{2^{3 x}-\frac{1}{2^{3 x}}}{2^{3 x}+\frac{1}{2^{3 x}}}=\lim _{x \rightarrow-\infty} \frac{\frac{2^{3 x} \cdot 2^{3 x}-1}{2^{3 x}}}{\frac{2^{3 x} \cdot 2^{3 x}+1}{2^{3 x}}=\lim _{x \rightarrow-\infty} \frac{2^{3 x+3 x}-1}{2^{3 x}} \cdot \frac{2^{3 x}}{2^{3 x+3 x}+1}} \\
&=\lim _{x \rightarrow-\infty} \frac{2^{6 x}-1}{2^{6 x}+1}=\frac{\left(\lim _{x \rightarrow-\infty} 2^{6}\right)^{0}-1}{\left(\lim _{x \rightarrow \infty} 2^{6 x}\right)^{0}+1}=-1
\end{aligned}
$$

Derivative of exponential function. If $f(x)=a^{x}$, then

$$
\begin{aligned}
& f^{\prime}(x)=\left(a^{x}\right)^{\prime}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h}=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=a^{x} f^{\prime}(0) \\
& \text { Let } e \text { be a number such that } \\
& \frac{\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1}{2}
\end{aligned}
$$

Then
$\frac{e \approx 2.7182818284590452}{\frac{d}{d x} e^{x}=e^{x}} \quad e>1$
The chain Rule for $y=e^{x}$.

$$
\left(e^{u(x)}\right)^{\prime}=u^{\prime}(x) e^{u(x)}
$$

- $\lim _{x \rightarrow-\infty} e^{x}=0$

Example 2. Differentiate each function.

1. $\begin{aligned} & f(x)=e^{\sqrt{x}} \\ & f^{\prime}(x)=\left(e^{\sqrt{x}}\right)^{\prime}=e^{\sqrt{x}}(\sqrt{x})^{\prime}\end{aligned}$

$$
=e^{\sqrt{x}} \frac{1}{2} x^{-1 / 2}=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}
$$

2. $f(x)=x e^{-x^{2}}$

$$
\begin{aligned}
&=x e^{-x^{2}} \\
& f^{\prime}(x)=\left(x e^{-x^{2}}\right)^{\prime}= \\
& \text { Product Rule } \\
&(x)^{\prime} e^{-x^{2}}+x\left(e^{-x^{2}}\right)^{\prime} \\
&=e^{-x^{2}}+x e^{-x^{2}}\left(-x^{2}\right)^{\prime} \\
&=e^{-x^{2}}+x e^{-x^{2}}(-2 x) \\
&=e^{-x^{2}}-2 x^{2} e^{-x^{2}} \\
&=e^{-x^{2}}\left(1-2 x^{2}\right)
\end{aligned}
$$

3. $f(x)=e^{x \tan x}$

$$
\begin{aligned}
&(x)=e^{x \tan x} \\
& f^{\prime}(x)=e^{x \tan x}(x \tan x)^{\prime}=e^{x \tan x}(\overbrace{(x)^{\prime}}^{\prime} \tan x+x(\overbrace{\tan x})^{\sec ^{2} x}) \\
&=e^{x \tan x}\left(\tan x+x \sec ^{2} x\right)
\end{aligned}
$$

4. $f(x)=x^{e}$ Power function

$$
\left(x^{n}\right)^{\prime}=n x^{n-1}
$$

$$
f^{\prime}(x)=e x^{e-1}
$$

Example 3. Show that the function $y=e^{2 x}+e^{-3 x}$ satisfy the differential equation

$$
\begin{aligned}
& y^{\prime \prime}+y^{\prime}-6 y=0 \\
& y=e^{2 x}+e^{-3 x} \\
& y^{\prime}=e^{2 x}(2 x)^{\prime}+e^{-3 x}(-3 x)^{\prime} \\
& y^{\prime}=2 e^{2 x}-3 e^{-3 x} \\
& y^{\prime \prime}=2\left(e^{2 x}\right)^{\prime}-3\left(e^{-3 x}\right)^{\prime} \\
& =2\left(2 e^{2 x}\right)-3\left(-3 e^{-3 x}\right) \\
& y^{\prime \prime}=4 e^{2 x}+9 e^{-3 x}
\end{aligned}
$$

plug $y_{y^{\prime \prime}}, y^{\prime}, y^{\prime \prime}$ into the equation $y_{y^{\prime \prime}}^{\prime \prime}+y^{\prime}-6 y=0$

$$
\left(4 e^{2 x}+9 e^{-3 x}\right)+\left(2 e^{2 x}-3 e^{-3 x}\right)-6\left(e^{2 x}+e^{-3 x}\right)
$$

$$
=4 e^{2 x}+9 e^{-3 x}+2 e^{2 x}-3 e^{-3 x}-6 e^{2 x}-6 e^{-3 x}
$$

$$
=e^{2 x}(4+2-6)+e^{-3 x}(9-3-6)=e^{2 x}(0)+e^{-3 x}(0)=0
$$

