Section 4.4 Derivatives of logarithmic functions

$$
\begin{gathered}
(\ln x)^{\prime}=\frac{1}{x} \\
\left(\ln (g(x))^{\prime}=\frac{g^{\prime}(x)}{g(x)}\right.
\end{gathered}
$$

Example 1. Differentiate each function

1. $f(x)=\sin x \ln x$

$$
\begin{aligned}
f^{\prime}(x) & =(\sin x)^{\prime} \ln x+\sin x(\ln x)^{\prime} \\
& =\cos x \ln x+\sin x \frac{1}{x}
\end{aligned}
$$

2. $f(x)=\ln \left(x^{2}+3 x-1\right)$

$$
\begin{aligned}
f^{\prime}(x)= & \frac{1}{x^{2}+3 x-1}\left(x^{2}+3 x-1\right)^{\prime} \\
& =\frac{2 x+3}{x^{2}+3 x-1}
\end{aligned}
$$

3. $f(x)=\frac{1-\ln x}{1+\ln x}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(1-\ln x)^{\prime}(1+\ln x)-(1+\ln x)^{\prime}(1-\ln x)}{(1+\ln x)^{2}}=\frac{-\frac{1}{x}(1+\ln x)-\frac{1}{x}(1-\ln x)}{(1+\ln x)^{2}} \\
&=\frac{-\frac{1}{x}-\frac{\ln x}{x}-\frac{1}{x}+\frac{\ln x}{x}}{(1+\ln x)^{2}}=-\frac{2}{x(1+\ln x)^{2}}
\end{aligned}
$$

4. $f(x)=\ln |x|$

$$
\begin{aligned}
& |x|=\left\{\begin{array}{ll}
x, & \text { if } x \geqslant 0 \\
-x, & \text { if } x<0,
\end{array}, \quad \ln |x|= \begin{cases}\ln x, & \text { if } x>0 \\
\ln (-x), & \text { if } x<0\end{cases} \right. \\
& (\ln |x|)^{\prime}=\left\{\begin{array}{ll}
\frac{1}{x}, & \text { if } x>0 \\
\frac{1}{-x}(-x)^{\prime}, \text { if } x<0
\end{array}=\left\{\begin{array}{cc}
\frac{1}{x}, & \text { if } x>0 \\
\frac{-1}{-x}, & \text { if } x<0
\end{array}= \begin{cases}\frac{1}{x}, & \text { if } x>0 \\
\frac{1}{x}, & \text { if } x<0\end{cases} \right.\right. \\
& (\ln |x|)^{\prime}=\frac{1}{x}, x \neq 0
\end{aligned}
$$

Example 2. Find the equation of the tangent line to the curve $x=\ln t, y=t \mathrm{e}^{t}$ at the point (0,e).

$$
\text { Find } t \text { such that }\left\{\begin{array}{l}
\ln t=0 \\
t e^{t}=e
\end{array} \Rightarrow t=1\right.
$$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\left(t e^{t}\right)^{\prime}}{(\ln t)^{\prime}}=\frac{e^{t}+t e^{t}}{\frac{1}{t}} & =t\left(e^{t}+t e^{t}\right) \\
& =t e^{t}(1+t)
\end{aligned}
$$

$$
\left.\frac{d y}{d x}\right|_{t=1}=(1) e^{\prime}(1+1)=2 e
$$

Example 3. Find $y^{\prime} \frac{\mathrm{i} d_{1}}{d x}=\frac{d \ln }{d x}\left(x^{2}+y^{2}\right)$ Implicit Differentiation.

$$
\begin{gathered}
y^{\prime}=\frac{1}{x^{2}+y^{2}} \frac{d}{d x}\left(x^{2}+y^{2}\right) \\
{\left[y^{\prime}=\frac{1}{x^{2}+y^{2}}\left(2 x+2 y y^{\prime}\right)\right]\left(x^{2}+y^{2}\right)} \\
\left(x^{2}+y^{2}\right) y^{\prime}=2 x+2 y y^{\prime} \\
\left(x^{2}+y^{2}\right) y^{\prime}-2 y y^{\prime}=2 x \\
y^{\prime}\left(x^{2}+y^{2}-2 y\right)=2 x \\
y^{\prime}=\frac{2 x}{x^{2}+y^{2}-2 y}
\end{gathered}
$$

$\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} \quad\left[\log _{a}(g(x))\right]^{\prime}=\frac{g^{\prime}(x)}{g(x) \ln a}$
Example 4. Find $\frac{d}{d x}\left(\log _{3}\left(\tan \left(x^{2}\right)\right)\right.$

$$
\begin{aligned}
& =\frac{1}{\tan \left(x^{2}\right) \ln 3}\left(\tan \left(x^{2}\right)\right)^{\prime} \\
& =\frac{2 x \sec ^{2}\left(x^{2}\right)}{\tan \left(x^{2}\right) \ln 3}
\end{aligned}
$$

$\left[\left(a^{x}\right)^{\prime}=a^{x} \ln a \quad\left[a^{g(x)}\right]^{\prime}=a^{g(x)} \ln a g^{\prime}(x)\right.$
Example 5. Find $\frac{d}{d x}\left(\sqrt{2-3^{x}}+\pi^{-x}+x^{e}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(2-3^{x}\right)^{-1 / 2}\left(2-3^{x}\right)^{\prime}+\pi^{-x} \ln \pi(-x)^{\prime}+e x^{e-1} \\
& =\frac{1}{2}\left(2-3^{x}\right)^{-1 / 2}\left(-3^{x} \ln 3\right)-\pi^{-x} \ln \pi+e x^{e-1}
\end{aligned}
$$

1. Take the logarithm of both sides of an equation.
2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y^{\prime}.

Example 6. Differentiate each function
$1 \ln y=\ln \left(x^{x}\right)$

$$
\begin{gathered}
\ln y=d \ln \left(x^{2}\right) \\
\frac{d}{d x} \ln y \frac{d}{d_{x}} x \ln x
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2. } y=x^{\sin x} \\
& \begin{array}{l}
\begin{array}{l}
\text { 2. } y=x^{\sin x} \\
\ln y=\ln \left(x^{\sin x}\right) \\
\frac{d}{d x} \ln y \\
\hline
\end{array} \quad\left(\begin{array}{l}
d \sin x \ln x
\end{array}\right. \\
\quad y^{\prime}=\operatorname{yy}\left(\cos x \ln x+\frac{\sin x}{x}\right) \\
\hline
\end{array} \\
& \text { 3. } y=\cos (\overbrace{x^{\sqrt{x}}}^{z}) \quad z=x^{\sqrt{x}} \\
& y^{\prime}=-\sin z \cdot z^{\prime} \\
& \ln z=\ln \left(x^{\sqrt{x}}\right) \\
& \frac{d}{d x} \ln z=\frac{d \sqrt{x}}{d x} \ln x
\end{aligned}
$$

$4 \ln y=\ln \frac{(x+1)^{4}\left[\sqrt[5]{x^{2}+1}\right]}{\left(x^{3}-1\right)^{10}\left(1+3 x^{2}\right)^{2016}}$

$$
\begin{aligned}
& \ln y= \ln \left[(x+1)^{4} \sqrt[5]{x^{2}+1}\right]-\ln \left[\left(x^{3}-1\right)^{10}\left(1+3 x^{2}\right)^{2016}\right] \\
&=\ln (x+1)^{4}+\ln \left[\sqrt[5]{x^{2}+1}\right]-\ln \left(x^{3}-1\right)^{10}-\ln \left(1+3 x^{2}\right)^{2016} \\
& \frac{d}{d x} \ln y=\frac{d}{d x}\left(4 \ln (x+1)+\frac{1}{5} \ln \left(x^{2}+1\right)-10 \ln \left(x^{3}-1\right)-2016 \ln \left(1+3 x^{2}\right)\right) \\
& \frac{y^{\prime}}{y}= \frac{4}{x+1}+\frac{1}{5} \cdot \frac{1}{x^{2}+1}\left(x^{2}+1\right)^{\prime}-10 \frac{1}{x^{3}-1}\left(x^{3}-1\right)^{\prime}-2016 \frac{1}{1+3 x^{2}}\left(1+3 x^{2}\right)^{\prime} \\
& \frac{y^{\prime}}{y}= \frac{4}{x+1}+\frac{2 x}{5\left(x^{2}+1\right)}-\frac{30 x^{2}}{x^{3}-1}-\frac{12096 x}{1+3 x^{2}} \\
& y^{\prime}=y\left(\frac{4}{x+1}+\frac{2 x}{5\left(x^{2}+1\right)}-\frac{30 x^{2}}{x^{3}-1}-\frac{12096 x}{1+3 x^{2}}\right) \\
&\left.y^{\prime}=\frac{(x+1)^{4} \sqrt[5]{x^{2}+1}}{\left(x^{3}-1\right)^{10}\left(1+3 x^{2}\right)^{2016}}\left(\frac{4}{x+1}+\frac{2 x}{5\left(x^{2}+1\right)}-\frac{30 x^{2}}{x^{3}-1}-\frac{12096 x}{1+3 x^{2}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(1+x)^{1 / x}=e \\
& \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
\end{aligned}
$$

