Section 5.3 Derivatives and the shapes of curves.

The mean value theorem If f is a differentiable function on the interval $[a, b]$, then there exist a number $c, a<c<b$, such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text { or } f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Increasing/decreasing test

1. If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
2. If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval

The first derivative test Suppose that c is a critical number of a continuous function f.

1. If f^{\prime} changes from positive to negative at c, then f has a local max at c.
2. If f^{\prime} changes from negative to positive at c, then f has a local min at c.
3. If f^{\prime} does not change sign c, then f has a no local max or min at c.

Definition. A function is called concave upward (CU) on an interval I if f^{\prime} is an increasing $\quad y \uparrow / f_{i g} C U$ function on I. It is called concave downward (CD) on I if f^{\prime} is an decreasing on I.

A point where a curve changes its direction of concavity is called an inflection point.

Concavity test

1. If $f^{\prime \prime}(x)>0$ on an interval, then f is CU on this interval.
2. If $f^{\prime \prime}(x)<0$ on an interval, then f is CD on this interval.

The second derivative test Suppose $f^{\prime \prime}$ is continuous near c.

$\left.\begin{array}{rl}f^{\prime}(c) & =0 \\ f^{\prime \prime}(c) & >0\end{array}\right\}$ localmin fis CU

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local min at c.
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local max at c.
$\left.\begin{array}{l}f^{\prime}(c)=0 \\ f^{\prime \prime}(c)<0\end{array}\right\}$ local ma,
f^{\prime} u

Example 1. Sketch the graph of the function
(a.) $f(x)=\mathrm{e}^{-\frac{1}{x+1}}$

1. $x-, y$-intercept. $\begin{aligned} e^{-\frac{1}{x+1}} & \neq 0 \text { (never intercepts the } x \text {-axis) }\end{aligned}$
y-intercept: $x=0 \quad f(0)=e^{-\frac{1}{0+1}}=e^{-1} \approx 0.37 \quad(0,0.37) \quad y$-intercept
2. Asymptotes.

$$
\left.\begin{aligned}
& \text { asymptotes. } \\
& \lim _{x \rightarrow-1^{-}} e^{-\frac{1}{x+1}}=\lim _{y \rightarrow \infty} e^{y}=\infty \quad \\
& \lim _{x \rightarrow-1^{-}}\left(-\frac{1}{x+1}\right)=\infty \\
& x=-1.01
\end{aligned} \quad \right\rvert\, \begin{aligned}
& \lim _{x \rightarrow-1^{+}} e^{-\frac{1}{x+1}}=\lim _{y \rightarrow-\infty} e^{y}=0 \\
& \lim _{x \rightarrow-1^{+}}\left(-\frac{1}{x+1}\right)=-\infty
\end{aligned}
$$

$$
x=-1 \quad \text { V.A. }
$$

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} e^{-\frac{1}{x+1}}=e^{-\lim _{x \rightarrow \infty} \frac{1}{x+1}}=e^{0}=1
$$

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} e^{-\frac{1}{x+1}}=e^{0}=1
$$

$$
y=1 \text { HA. }
$$

3. Continuity. $x=-1$ infinite discontinuity continuous on $(-\infty,-1) \cup(-1, \infty)$

$$
\begin{aligned}
& \text { 4. } f^{\prime}(x)=\left(e^{-\frac{1}{x+1}}\right)^{\prime}=e^{-\frac{1}{x+1}}\left(-\frac{1}{x+1}\right)^{\prime} \\
& \begin{array}{l}
=e^{-\frac{1}{x+1}}\left(-\left(-\frac{1}{(x+1)^{2}}\right)\right) \\
=\frac{e^{-\frac{1}{x+1}}}{(x+1)^{2}}>0, \text { if } x \neq-1
\end{array} \\
& f \text { is increasing on }(-\infty,-1) \cup(-1, \infty) \\
& \text { 5. } f^{\prime \prime}(x)=\left(\frac{e^{-\frac{1}{x+1}}}{(x+1)^{2}}\right)^{\prime}=\frac{e^{-\frac{1}{x+1}}\left(+\frac{1}{(x+1) x}\right)(x+1)^{2}-2(x+1) e^{-\frac{1}{x+1}}}{(x+1)^{4}} \\
& =\frac{e^{-\frac{1}{x+1}}(+1-2(x+1)}{(x+1)^{4}}=\frac{e^{-\frac{1}{x+1}}(-2 x-1)}{(x+1)^{4}}=0 \\
& -2 x-1=0 \text { or } x=-\frac{1}{2} \\
& f\left(-\frac{1}{2}\right)=e^{-\frac{1}{-1 / 2+1}}=e^{-2} \approx 0.135 \\
& \begin{array}{l}
\left(-\frac{1}{2}, e^{-2}\right) \approx(-0.5,0.135) \text { inflection point } \\
f^{\prime \prime}(x)>0, f^{\prime \prime}(x)=\frac{e^{-\frac{1}{x+1}}(-2 x-1)}{(x+1)^{4}}>0
\end{array} \\
& \frac{e^{-\frac{1}{x+1}}}{(x+1)^{4}}>0 \text { when } x \neq-1 \quad\left\{\begin{array}{l}
-2 x-1>0 \\
x<-1 / 2
\end{array}\right. \\
& \begin{array}{l}
f \text { is } \subset U \text { on }(-\infty,-1) \cup(-1,-1 / 2) \\
f \text { is } C D \text { on }(-1 / 2, \infty)
\end{array}
\end{aligned}
$$

(b.) $f(x)=\frac{x}{(x-1)^{2}}$

1. x, y - intercepts.

$$
\frac{x}{(x-1)^{2}}=0 \Leftrightarrow x=0
$$

2. Asymptotes.

$$
\begin{gathered}
x=1 \quad \text { V.A } \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x}{(-x-1)^{2}}=\infty \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x}{(x-1)^{2}}=\infty
\end{gathered}
$$

$(0,0)$ point of intersection.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x}{(x-1)^{2}}=0 \\
& \lim _{x \rightarrow-\infty} f(x)=0 \\
& y=0 \quad \text { H.A. }
\end{aligned}
$$

3. Continuity. $x=1$ infinite discontinuity. continuous on $(-\infty, 1) \cup(1, \infty)$
4. $f^{\prime}(x)=\frac{(x-1)^{2}-x 2(x-1)}{(x-1)^{4}}=\frac{x-1-2 x}{(x-1)^{3}}=\frac{-1-x}{(x-1)^{3}}=0 \quad x=-1$ critical

$$
\begin{gathered}
f^{\prime}(x)>0 \text { or } \frac{-1-x}{(x-1)^{3}}>0 \\
f^{\prime}(0)=\frac{-1}{(-1)^{3}}>0 \\
f^{\prime}(2)=\frac{-1-2}{(2-1)^{3}}<0 \\
f^{\prime}(-2)=\frac{-1+2}{(-1-2)^{3}}=<0 \\
f(-1)=-\frac{1}{(-1-1)^{2}}=-\frac{1}{4} \\
\left(-1,-\frac{1}{4}\right)-\text { local min }
\end{gathered}
$$

$$
f \text { is increasing on }(-1,1)
$$

$$
f \text { is decreasing on }(-\infty,-1) \cup(1, \infty)
$$

5. $f^{\prime \prime}(x)=\left(-\frac{x+1}{(x-1)^{3}}\right)^{\prime}$
$=-\frac{(x-1)^{3}-3(x-1)^{2}(x+1)}{(x-1)^{6}}=-\frac{x-1-3(x+1)}{(x-1)^{4}}=-\frac{x-1-3 x-3}{(x-1)^{4}}$

$$
=-\frac{-2 x-4}{(x-1)^{4}}=\frac{2 x+4}{(x-1)^{4}}=0
$$

$$
f(x)=\frac{x}{(x-1)^{2}}
$$

