Section 6.2 Area

Problem. Find the area of the region S that lies under the curve $y=f(x)$ from a to b.

$$
S=\{(x, y): a \leq x \leq b, 0 \leq y \leq f(x)\}
$$

We start by subdividing the interval $[a, b]$ into smaller subintervals by choosing partition points $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ so that

Then the n subintervals are

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right] \ldots\left[x_{n-1}, x_{n}\right]
$$

This subdivision is called a partition of $[a, b]$ and we denote it by P. We use the notation Δx_{i} for the length of the i th subinterval $\left[x_{i-1}, x_{i}\right]$.

$$
\Delta x_{i}=x_{i}-x_{i-1}
$$

The length of the longest subinterval is denoted by $\|P\|$ and is called the norm of P.

$$
\|P\|=\max \left\{\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}\right\}
$$

Partition $[a, b]$ into n subintervals of equal lengths Δx
then - $\Delta x=\frac{b-a}{n}$

- Partition points.

$$
\begin{aligned}
& x_{0}=a \\
& x_{1}=a+\Delta x \\
& x_{2}=x_{1}+\Delta x=(a+\Delta x)+\Delta x=a+2 \Delta x \\
& x_{3}=x_{2}+\Delta x=a+3 \Delta x \\
& x_{i}=a+i \Delta x \\
& x_{n}=b
\end{aligned}
$$

- $\|P\| \rightarrow 0$ is equivalent to $n \rightarrow \infty$

By drawing the lines $x=a, x=x_{1}, \ldots x=b$, we use the partition P to divide the region S into strips $S_{1}, S_{2}, \ldots, S_{n}$.

We choose a number x_{i}^{*} in each subinterval $\left[x_{i-1}, x_{i}\right]$ and construct a rectangle R_{i} with base Δx_{i} and height $f\left(x_{i}^{*}\right)$.

The area of the i th rectangle R_{i} is

$$
A_{i}=f\left(x_{i}^{*}\right) \Delta x_{i}
$$

The n rectangles $R_{1}, R_{2}, \ldots, R_{n}$ form a polygonal approximation to the region S.

$$
A(S) \approx \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

This approximation becomes better and better as the strips become thinner and thinner, that is, as $\|P\| \rightarrow 0$. Then

$$
A=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

Example 1. Determine a region whose area is equal to

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

DO NOT EVALUATE THE LIMIT.

$$
\begin{gathered}
f\left(x_{i}^{*}\right)=\sqrt{1+\frac{3 i}{n}}, \Delta x_{i}=\frac{3}{n} \leftarrow \text { does not depend on } i . \\
\text { nefintervals of equal length. } \\
\Delta x=\frac{3}{n}=\frac{b-a}{n}
\end{gathered}
$$

Example 2. Find the area under the curve $y=1 / x^{2}$ from 1 to 2 . Use four subintervals of equal length and take x_{i}^{*} to be the midpoint of the i th subinterval.

- Find x_{i}^{*}.
x_{1}^{*} is the midpoint for $\left[1, \frac{5}{4}\right]$

$$
x_{1}^{*}=\frac{1+\frac{5}{4}}{2}=\frac{9}{8}, f\left(x_{1}^{*}\right)=f\left(\frac{9}{8}\right)=\frac{1}{(9 / 8)^{2}}=\frac{64}{81}
$$ x_{2}^{*} is the midpoint for $\left[\frac{5}{4}, \frac{3}{2}\right]$

$x_{2}^{*}=\frac{\frac{5}{4}+\frac{3}{2}}{2}=\frac{11}{8}, \quad f\left(x_{2}^{*}\right)=f\left(\frac{11}{8}\right)=\frac{1}{(11 / 8)^{2}}=\frac{64}{121}$
x_{3}^{*} is the midpoint for $\left[\frac{3}{2}, \frac{7}{4}\right]$
$x_{3}^{*}=\frac{\frac{3}{2}+\frac{7}{4}}{2}=\frac{13}{8}, f\left(x_{3}^{*}\right)=f\left(\frac{13}{8}\right)=\frac{1}{(13 / 8)^{2}}=\frac{64}{169}$
x_{4}^{*} is the midpoint for $\left[\frac{7}{4}, 2\right]$
$x_{4}^{*}=\frac{\frac{7}{4}+2}{2}=\frac{15}{8}, f\left(x_{4}^{*}\right)=f\left(\frac{15}{8}\right)=\frac{1}{(15 / 8)^{2}}=\frac{64}{225}$

$$
\begin{aligned}
& A \approx f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+f\left(x_{3}^{*}\right) \Delta x+f\left(x_{4}^{*}\right) \Delta x \\
&=\underbrace{\frac{1}{4}}_{\Delta x}\left(\frac{64}{81}+\frac{64}{121}+\frac{64}{169}+\frac{64}{225}\right)=\frac{16\left(\frac{1}{81}+\frac{1}{121}+\frac{1}{169}+\frac{1}{225}\right)}{} \\
& \approx 0.4955
\end{aligned}
$$

Example 3. Find the area under the curve $y=x^{2}+3 x-2$ from 1 to 4 . Use equal subintervals \longrightarrow and-take x_{i}^{*} to -bethe right endpoint of the i th subinterval.

- Length of hebintervals $\Delta x=\frac{4-1}{n}=\frac{3}{n}$
- Partition points: $\quad x_{0}=1$

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=1+\Delta x=1+\frac{3}{n}
\end{aligned}
$$

$$
x_{2}=1+2 \Delta x=1+2 \cdot \frac{3}{n}
$$

$$
x_{i}=1+i \cdot \frac{3}{n}
$$

$$
k_{n}=4
$$

- $x_{i}^{*}=x_{i}=1+\frac{3 i}{n},\left[x_{i-1}, x_{i}\right]$

$$
f\left(x_{i}^{*}\right)=\left(x_{i}^{*}\right)^{2}+3 x_{i}^{*}-2=\left(1+\frac{3 i}{n}\right)^{2}+3\left(1+\frac{3 i}{n}\right)-2
$$

$$
=1+\frac{6 i}{n}+\frac{9 i^{2}}{n^{2}}+3+\frac{9 i}{n}-2
$$

$$
=\frac{9 i^{2}}{n^{2}}+\frac{15 i}{n}+2
$$

$$
\text { - } A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow-\infty} \sum_{i=1}^{n}\left(\frac{9 i^{2}}{n^{2}}+\frac{15 i}{n}+2\right) \frac{3}{n}
$$

$$
=\lim _{n \rightarrow \infty} \frac{3}{n}\left[\sum_{i=1}^{n} \frac{9 i^{2}}{n^{2}}+\sum_{i=1}^{n} \frac{15 i}{n}+\sum_{i=1}^{n} 2\right]
$$

$$
=\lim _{n \rightarrow \infty} \frac{3}{n}[\frac{9}{n^{2}}{\underset{\frac{\sum}{i=1}}{\sum_{i=1}^{n} i^{2}(2 n+1)} 6}_{6}^{n} \frac{15}{\frac{\sum_{i=1}^{n} i}{2} i}+2 \underbrace{\sum_{i=1}^{n} 1}_{n}]
$$

$$
=\lim _{n \rightarrow \infty} \frac{3}{n}\left[\frac{9}{n^{2}} \frac{n(n+1)(2 n+1)}{6}+\frac{15}{n} \frac{n(n+1)}{2}+2 n\right]
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{9(n+1)(2 n+1)^{\frac{9(2)}{2}}}{2 n^{2}}+\frac{45(n+1)^{\frac{45}{2}}}{2 n}+\frac{6 n}{n}\right)=9+\frac{45}{2}+6=37.5
$$

