Section 6.3 The definite integral

Definition of a definite integral.
If f is a function defined on a closed interval $[a, b]$, let P be a partition of $[a, b]$ with partition points $x_{0}, x_{1}, \ldots, x_{n}$, where

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

Choose points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ and let $\Delta x_{i}=x_{i}-x_{i-1}$ and $\|P\|=\max \left\{\Delta x_{i}\right\}$. Then the definite integral of f from a to b is

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \quad \frac{\text { Riemann sum }}{\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}} \tag{is}
\end{equation*}
$$

if this limit exists. If the limit does exist, then f is called integrable on the interval $[a, b]$.
In the notation $\int_{a}^{b} f(x) d x, f(x)$ is called the integrand and a and b are called the limits of integration; a is the lower limit and b is the upper limit.

The procedure of calculating an integral is called integration.

For the special case where $f(x) \geq 0, \int_{a}^{b} f(x) d x=$ area under the graph of f from a to b.

$$
\begin{gathered}
\frac{\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x}{\int_{a}^{a} f(x) d x=0}
\end{gathered}
$$

Example 1. Evaluate $\int_{0}^{7} f(x) d x$ if the graph of the function $f(x)$ is

Theorem 1. If f is continuous on $[a, b]$, then f is integrable on $[a, b]$.
If f has a finite number of discontinuities and these are all jump discontinuities, then f is called piecewise continuous function.

Theorem 2. If f is piecewise continuous on $[a, b]$, then f is integrable on $[a, b]$.
f is integrable on $[a, b]$, then f must be bounded function on $[a, b]$: that is, there exist a number M such that $|f(x)| \leq M$ for all $x \in[a, b]$.
Let P be a regular partition of $[a, b]$: that is $\Delta x=\Delta x_{1}=\Delta x_{2}=\ldots=\Delta x_{n}=\frac{b-a}{n}$ and
$x_{0}=a, x_{1}=a+\Delta x, x_{2}=a+2 \Delta x, \ldots, x_{n}=b$
If we choose x_{i}^{*} to be the right endpoint of the i th interval, then $x_{i}^{*}=x_{i}=a+i \Delta x=a+i \frac{b-a}{n}$, so

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)
$$

If x_{i}^{*} is the midpoint of the \longrightarrow th interval, then $x_{i}^{*}=\bar{x}_{i}=\left(x_{i-1}+x_{i}\right) / 2$, so

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(\bar{x}_{i}\right)
$$

Example 2. Evaluate the integral $\int_{1}^{4}\left(x^{2}-2\right) d x$

- Partition $[1,4]$ into n subintervals of equal length $\Delta x=\frac{4-1}{n}=\frac{3}{n}$
- Partition points:

$$
\begin{aligned}
x_{i}^{*} & =x_{i}=1+i \frac{3}{n} \\
f\left(x_{i}^{*}\right) & =\left(1+\frac{3 i}{n}\right)^{2}-2 \\
& =1+\frac{6 i}{n}+\frac{9 i^{2}}{n^{2}}-2 \\
& =\frac{9 i^{2}}{n^{2}}+\frac{6 i}{n}-1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{4}\left(x^{2}-2\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \underbrace{\left(\frac{9 i^{2}}{n^{2}}+\frac{6 i}{n}-1\right.}_{f\left(x_{i}^{*}\right)} \underbrace{\frac{3}{n}}_{f(x)} \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\sum_{i=1}^{n} \frac{9 i^{2}}{n^{2}}+\sum_{i=1}^{n} \frac{b i}{n}-\sum_{i=1}^{n} 1\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}(\frac{9}{n^{2}} \sum_{\frac{n}{n(n+1)(2 n+1)}}^{\sum_{i=1}^{n} i^{2}}+\frac{6}{n} \underbrace{\sum_{n=1}^{n} i}_{\frac{n(n+1)}{2}}-\underbrace{\sum_{i=1}^{n} 1}_{n}) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{q^{3}}{n^{2}} \frac{k(n+1)(2 n+1)}{n^{9}}+\frac{k^{3}}{n^{3}} \cdot \frac{n(n+1)}{2}-n\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{9(n+1)(2 n+1))^{\frac{9(2)}{2}}}{2 n^{2}}+\frac{9(n+1)^{9}}{n}-\frac{3 x}{\pi}\right)=9+9-3=15 \\
& \int_{1}^{4}\left(x^{2}-2\right) d x=\left[\frac{x^{3}}{3}-2 x\right]_{1}^{4}=\frac{4^{3}}{3}-2(4)-\left(\frac{1}{3}-2\right) \\
& =\frac{64}{3}-8-\frac{1}{3}+2=\frac{63}{3}-6=21-6=15
\end{aligned}
$$

Properties of the definite integral

1. $\int^{b} c d x=c(b-a)$, where c is a constant.
${ }^{a}$
2. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$, where c is a constant.
3. $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
4. $\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$.
5. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, where $a<c<b$.
6. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$.
7. If $f(x) \geq 0$ for $a<x<b$, then $\int_{a}^{b} f(x) d x \geq 0$.
8. If $f(x) \geq g(x)$ for $a<x<b$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$.
9. If $m \leq f(x) \leq M$ for $a<x<b$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$.
10. $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$

Example 3. Express the limit as a definite integral
(a.) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{5}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{f\left(x_{i}^{*}\right)} \underbrace{n^{4}}_{\Delta x} \cdot \underbrace{\frac{1}{n}}_{0}=\int_{0}^{1} x^{4} d x$

$$
\begin{aligned}
f\left(x_{1}^{*}\right)=\frac{i^{4}}{n^{4}}, & \text { if } x_{i}^{*}=\frac{i}{n}, \text { then } \quad f(x)=x^{4} \\
& \frac{b-a}{n}=\frac{1}{n} \Rightarrow b-a=1, \quad a=0
\end{aligned}
$$

$$
\begin{gathered}
x_{i}^{*}=a+i \Delta x \\
\Delta x=\frac{1}{n} \\
x_{i}^{*}=\frac{i}{n} \Rightarrow a=0
\end{gathered}
$$

(b.) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[3\left(1+\frac{2 i}{n}\right)^{5}-6\right] \frac{2}{n}$

$$
\begin{aligned}
& \Delta x=\frac{2}{n}=\frac{b-a}{n} \Rightarrow b-a=2 \\
& f\left(x_{i}^{*}\right)=3\left(1+\frac{2 i}{n}\right)^{5}-b \Rightarrow f(x)=3 x^{5}-6 \\
& x_{i}^{*}=1+\frac{2 i}{n} \\
&=a+i \cdot \Delta x \Rightarrow a=1 \\
&=\int_{1}^{3}\left(3 x^{5}-6\right) d x
\end{aligned}
$$

Example 4. Write the given sum or difference as a single integral
(a.) $\int_{1}^{3} f(x) d x+\int_{3}^{6} f(x) d x+\int_{6}^{1} 2 f(x) d x$

(b.) $\int_{2}^{10} f(x) d x-\int_{2}^{7} f(x) d x$
$\int_{2}^{7} f(x) d x+\int_{7}^{10} f(x) d x-\int_{2}^{7} f(x) d x=\int_{7}^{10} f(x) d x$

