Section 6.4 The fundamental theorem of calculus.

Theorem. Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}$, where F is an antiderivative of f.

Example 1. Find the derivative of the function.

1. $g(x)=\int_{\pi}^{x} \frac{1}{1+t^{4}} d t$

$$
\begin{aligned}
& g^{\prime}(x)=f(x) \text {, where } f(x)=\frac{1}{1+x^{4}} \\
& g^{\prime}(x)=\frac{1}{1+x^{4}}
\end{aligned}
$$

2. $f(x)=\int_{x}^{4}(2+\sqrt{t})^{8} d t=-\int_{4}^{x}(2+\sqrt{t})^{8} d t$

$$
f^{\prime}(x)=-(2+\sqrt{x})^{8}
$$

3. $y=\int_{\tan x}^{17} \sin \left(t^{4}\right) d t=-\int_{17}^{\tan x} \sin \left(t^{4}\right) d t$

$$
\begin{aligned}
u & =\tan x \\
y^{\prime} & =-\sin \left(u^{4}\right) \cdot \frac{d u}{d t} \\
& =\sin \left(\tan ^{4} x\right) \cdot \sec ^{2} x
\end{aligned}
$$

Example 2. Evaluate the integral.

1. $\int_{2}^{6} \frac{1+\sqrt{y}}{y^{2}} d y=\int_{2}^{6}(1+\sqrt{y}) y^{-2} d y=\int_{2}^{6}(y^{-2}+\overbrace{y^{1 / 2} \cdot y^{-2}}^{y^{1 / 2-2}}) d y$

$$
\begin{aligned}
&=\int_{2}^{6}\left(y^{-2}+y^{-3 / 2}\right) d y=\left[\frac{y^{-2+1}}{-2+1}\right.\left.+\frac{y^{-3 / 2+1}}{-3 / 2+1}\right]_{2}^{6}=\left[-\frac{1}{y}-\frac{2}{\sqrt{y}}\right]_{2}^{6} \\
&=\left[-\frac{1}{6}-\frac{2}{\sqrt{6}}\right]-\left[-\frac{1}{2}-\frac{2}{\sqrt{2}}\right] \\
&=-\frac{1}{6}-\frac{2}{\sqrt{6}}+\frac{1}{2}+\frac{2}{\sqrt{2}} \\
&=\frac{1}{3}-\frac{2}{\sqrt{6}}+\frac{2}{\sqrt{2}}
\end{aligned}
$$

2. $\int_{0}^{2} f(x) d x$, where $f(x)=\left\{\begin{array}{l}x^{4}, 0 \leq x<1 \\ x^{5}, 1 \leq x \leq 2\end{array}\right.$

$$
\begin{aligned}
=\int_{0}^{1} x^{4} d x+\int_{1}^{2} x^{5} d x & \left.\left.=\frac{x^{4+1}}{4+1}\right]_{0}^{1}+\frac{x^{5+1}}{5+1}\right]_{1}^{2} \\
& \left.\left.=\frac{x^{5}}{5}\right]_{0}^{1}+\frac{x^{6}}{6}\right]_{1}^{2}
\end{aligned}=\frac{1}{5}-0+\frac{2^{6}}{6}-\frac{1}{6} .
$$

Example 3. A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-2 t-8$.

1. Find the displacement of the particle during the time period $1 \leq t \leq 6$.
2. Find the distance traveled during this time period.

Find where $v(t)>0$

$$
t^{2}-2 t-8>0
$$

$$
\xrightarrow[-2]{1}\left[\begin{array}{lll}
1 & + \\
\hline
\end{array}\right.
$$

$$
\begin{array}{rlr}
v(t)<0 \text { on }(1,4) & \begin{array}{l}
v(2))=(2-4)(2+2)<0 \\
v(t)>0 \text { on }(4,6) \\
\int_{1}^{6} \mid v(t)(5)=(5-4)(5+2)>0
\end{array} & =\int_{1}^{4}(-v(t)) d t+\int_{4}^{6} v(t) d t \\
& =\int_{1}^{4}\left(-t^{2}+2 t+8\right) d t+\int_{4}^{6}\left(t^{2}-2 t-8\right) d t \\
& =\left[-\frac{t^{3}}{3}+\frac{2 t^{2}}{2}+8 t\right]_{1}^{4}+\left[\frac{t^{3}}{3}-\frac{2 t^{2}}{2}-8 t\right]_{4}^{6} \\
& =-\frac{4^{3}}{3}+4^{2}+8(4)-\left(-\frac{1}{3}+1+8\right)+\frac{6^{3}}{3}-6^{2}-8(6)-\left(\frac{4^{3}}{3}-4^{2}-8(4)\right) \\
& =-\frac{64}{3}+16+32+\frac{1}{3}-9+72-36-48-\frac{64}{3}+16+32=\frac{122}{3}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
t=b \quad H=t \\
\text { dedisplacentent. }
\end{array} \\
& \mathscr{D}=\int_{1}^{6} v(t) d t=\int_{1}^{6}\left(t^{2}-2 t-8\right) d t=\left[\frac{t^{3}}{3}-\frac{2 t^{2}}{26}-8 t\right]_{1}^{6} \\
& =\frac{6^{3}}{3}-6^{2}-8(6)-\left(\frac{1}{3}-1-8\right) \\
& =72-36-48-\frac{1}{3}+9=-3-\frac{1}{3}=-\frac{10}{3} \\
& \text { displacement }=\left(-\frac{10}{3}\right)=\frac{10}{3}
\end{aligned}
$$

