The dot product.

Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$. If either \vec{a} or \vec{b} is $\vec{0}$, we define $\vec{a} \cdot \vec{b} = 0$.

Example 1. If the vectors \vec{a} and \vec{b} have lengths 2 and 6, and the angle between them is

$$\frac{\pi/4, \text{ find } \vec{a} \cdot \vec{b}.}{\theta} = |\vec{a}| \cdot |\vec{b}| \cos \theta = 2 \cdot 6 \cos \frac{\pi}{4} = 12 \cdot \frac{12}{2} = 6 \cdot \frac{12}{2}$$

If
$$\vec{a}=< a_1, a_2>$$
 and $\vec{b}=< b_1, b_2>$, then
$$\vec{a}\cdot \vec{b}=a_1b_1+a_2b_2$$

Example 2. Find
$$\vec{a} \cdot \vec{b}$$
 if $\vec{a} = \langle 2, 3 \rangle$ and $\vec{b} = \vec{i} - 3\vec{j} = \langle 1, -3 \rangle$
 $\vec{a} \cdot \vec{c} = 2(1) + 3(3) = 2 - 9 = -7$, $\vec{c} = 2 \cdot 7$

Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\pi/2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$. **Example 3.** Find the angle between the vectors $\vec{a} = 6\vec{i} - 2\vec{j}$ and $\vec{b} = <1, 1>$.

$$\vec{a} : \vec{c} = |\vec{a}| |\vec{c}| \cos \theta \Rightarrow \boxed{cos \theta = \frac{\vec{a} \cdot \vec{c}}{|\vec{a}| \cdot |\vec{c}|}} \qquad \vec{a} \cdot \vec{c}' = 6(1) - 2(1) = 4$$

$$|\vec{a}| = \sqrt{6^2 + (-2)^2} = \sqrt{40^4} = 2\sqrt{10}$$

$$|\vec{c}'| = \sqrt{1+1} = \sqrt{2}$$

$$cos \theta = \frac{4}{2\sqrt{10} \cdot 12} = \frac{2}{\sqrt{20}} = \frac{2}{2\sqrt{15}} = \boxed{\frac{1}{5}}$$

$$\theta = \cos^{-1}\left(\frac{1}{\sqrt{5}}\right) \approx 63^\circ$$

Example 4. Determine whether the given vectors are orthogonal, parallel, or neither. $\overrightarrow{a} \perp \overrightarrow{b}$ if and only if $\overrightarrow{a} \cdot \overrightarrow{b}$ and only if $\overrightarrow{a} = c \cdot \overrightarrow{b}$, c is a constant

(a.)
$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{b} = -2\vec{\alpha}$$

$$\vec{a} \neq \sqrt{\vec{b}}$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{b} = -2\vec{\alpha}$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{-2}\vec{\imath} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2} \rangle, \vec{b} = -2\vec{\imath} + 4\vec{\jmath} = \langle \mathbf{1}, \mathbf{2} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{3}, \mathbf{3} \rangle$$

$$\vec{a} = \langle \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{3},$$

(b.)
$$\vec{a} = \langle 3, 1 \rangle, \vec{b} = \langle -3, 9 \rangle$$
 $\vec{a} \cdot \vec{b} = 3(-3) + |(9)| = 0$

perpendicular

(c.)
$$\vec{a} = -\vec{i} + 4\vec{j}$$
, $\vec{b} = 3\vec{i} - 2\vec{j}$
 $\vec{a} = \langle -1, 4 \rangle$, $\vec{b} = \langle 3, -2 \rangle$
 $\vec{a} \cdot \vec{b}' = \langle -1, 4 \rangle \cdot \langle 3, -2 \rangle = -1(3) + 4(-2) = -11 \neq 0$ not perpendicular $|\vec{a}'| = \sqrt{1 + |\vec{b}'|^2} |\vec{17}'| = \sqrt{|\vec{a}'|^2} |\vec{13}|$
 $\cos \theta = \frac{\vec{a} \cdot \vec{b}'}{|\vec{a}'| |\vec{b}'|} = \frac{-11}{\sqrt{17} \sqrt{5}} \neq \pm 1$ not parallel

Properties of the dot product If \vec{a} , \vec{b} , an \vec{c} are vectors and k is a scalar, then

- 1. $\vec{a} \cdot \vec{a} = |a|^2$
- $2. \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- 2. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ 3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ 4. $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b}) = \vec{a}(k\vec{b})$ 5. $\vec{0} \cdot \vec{a} = 0$

$$comp_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

vector projection of
$$\vec{a}$$
 onto \vec{a} proj $\vec{a}\vec{b} = |\vec{p}\vec{s}| \cdot \frac{\vec{a}}{|\vec{\alpha}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a}$ $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a}$

Example 5. Find the scalar and the vector projections of $\vec{b} = <4, 2>$ onto $\vec{a}=\vec{\imath}+\vec{\jmath}.$

$$comb_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = \frac{4+2}{\sqrt{1+1}} = \frac{6}{\sqrt{12}}$$

$$Proj_{\vec{a}} \vec{b}' = comp_{\vec{a}} \vec{b}' \cdot \frac{\vec{a}'}{|\vec{a}'|} = \frac{6}{\sqrt{12}} \cdot \frac{\langle 1, 1 \rangle}{\sqrt{12}} = \frac{\langle 3, 3 \rangle}{\sqrt{12}}$$

Work done by the force
$$W = \overrightarrow{F} \cdot \overrightarrow{AB}$$

A woman exerts a horizontal force of 85 lb on a crate as she pushes it up a ramp that is 20 ft long and inclined at an angle of 20° above the horizontal. Find the work done on the box. (Give your answer correct to the nearest whole number.)

$$|\vec{F}| = 85 \text{ f}$$

$$|\vec{D}| = 20 \text{ ft}$$

A force
$$\vec{F}=<5,8>$$
 moves an object from the point (1,3) to the point $(1,4)$. Find the work done by this force. $\vec{D}=<11-1, 4-3>=<10,1>$ $\vec{F}\cdot\vec{D}=<5,8>\cdot<10,1>=50+8=58$ lb-ft

Definition. Given the nonzero vector $\vec{a} = \langle a_1, a_2 \rangle$, the **orthogonal complement** of \vec{a} is the vector $\vec{a}^{\perp} = \langle -a_2, a_1 \rangle$.

Vectors \vec{a} and \vec{a}^{\perp} are orthogonal and $|\vec{a}| = |\vec{a}^{\perp}|$

The distance from the point P to the line L

$$|PQ| = \operatorname{comp}_{\overrightarrow{AB}^{\perp}} \overrightarrow{AP}$$

3

Example 6. Find the distance from the point (0.4) to the line 2x + 5y = -3.

$$D = \left| \frac{2(0) + 5(4) + 3}{\sqrt{\lambda^2 + 5^2}} \right|$$