A cup of coffee has a temperature of $200^{\circ} \mathrm{F}$ and is in a room that has a temperature of $70^{\circ} \mathrm{F}$. After 10 \min the temperature of the coffee is $150^{\circ} \mathrm{F}$.
(a) What is the temperature of the coffee after 15 min ?
(b) When will the coffee have cooled to $100^{\circ} \mathrm{F}$?

$$
\begin{aligned}
& \frac{d T}{d t}=k(T-M), \\
& \\
& \\
& \\
& \\
& \\
& T(0)=200, \quad M=70 \\
& T(10)=150, \quad T(15)=?, \quad \text { if } \quad T(t)=100 \\
& t=?
\end{aligned}
$$

$$
\begin{aligned}
& T(t)=\frac{70+130 e^{k t}}{T(10)=} \begin{array}{l}
70+130 e^{10 k}=150 \\
130 e^{10 t}=150-70 \\
130 e^{10 k}=80 \\
e^{10 k}=\frac{8}{13} \\
10 \varepsilon=\ln \frac{8}{13}
\end{array} t=\frac{1}{10} \ln \frac{8}{13} \\
& T(t)=70+130 e^{\frac{t}{10} \ln \frac{8}{3}} \\
& T(15)=70+130 e^{\frac{15}{10} \ln \frac{8}{13}}=70+130 e^{\frac{3}{2} \ln \frac{8}{13}} \\
& 70+130\left(\frac{8}{13}\right)^{3 / 2}
\end{aligned}
$$

$$
T(t)=\frac{70+130 e^{\frac{t}{10} \ln \frac{8}{13}}=100}{130 e^{\frac{t}{10} \ln \frac{8}{13}}=30}
$$

$$
\frac{t}{10} \ln \frac{8}{13}=\ln \frac{3}{13}
$$

$$
\frac{t}{10}=\frac{\ln \frac{3}{13}}{\ln \frac{8}{13}}
$$

$$
t=10 \cdot \frac{\ln \frac{3}{13}}{\ln \frac{8}{13}}
$$

1. Given vectors $\mathbf{a}=\mathbf{=}=\mathbf{i}-2 \mathbf{j}, \mathbf{b}=\langle-2,3\rangle$. Find
(a) a unit vector \mathbf{u} that has the same direction as $2 \mathbf{b}+\mathbf{a}$.
(b) angle between \mathbf{a} and \mathbf{b}
(c) comp $_{\mathrm{b}} \mathbf{a}, \operatorname{proj}_{\mathrm{b}} \mathbf{a}$.
(a) $\begin{aligned} & 2 \vec{b}+\vec{a}=2\langle-2,3\rangle+\langle 1,-2\rangle \\ &=\langle-4,6\rangle+\langle 1,-2\rangle \\ &=\langle-3,4\rangle \\ & \vec{u}=\frac{2 \vec{b}+\vec{a}}{|2 \vec{b}+\vec{a}|}=\frac{\langle-3,4\rangle}{5}=\sqrt{(-3)^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5 \\ &\end{aligned}$
(b) $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{\langle 1,-2\rangle \cdot\langle-2,3\rangle}{\sqrt{1+4} \cdot \sqrt{4+9}}=\frac{-2-6}{\sqrt{5} \cdot \sqrt{13}}=-\frac{8}{\sqrt{5} \cdot \sqrt{13}}$

$$
\theta=\arccos \left(-\frac{8}{\sqrt{5 \cdot \sqrt{13}}}\right)
$$

(c) $\operatorname{comp}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{-8}{\sqrt{13}}$

$$
\begin{aligned}
& \operatorname{comp}_{\vec{b}} \vec{a}=\frac{\vec{b} \mid}{|\vec{b}|}=\overrightarrow{\sqrt{13}} \\
& \operatorname{pro}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \cdot \vec{b}=-\frac{8}{13}\langle-2,3\rangle=\left\langle\frac{16}{13},-\frac{24}{13}\right\rangle
\end{aligned}
$$

3. Find the distance from the point $(-2,3)$ to the line $3 x-4 y+5=0$.

$$
d=\left|\frac{3(-2)-4(3)+5}{\sqrt{9+16}}\right|=\frac{13}{5}
$$

14. A balloon is rising at a constant speed of $5 \mathrm{ft} / \mathrm{s}$. A boy is cycling along a straight road at a speed of 15 ft / s. When he passes under the balloon it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 s later?

$$
\begin{aligned}
& \frac{d x}{d t}=5 \\
& \frac{d y}{d t}=+15
\end{aligned}
$$

$$
d^{2}=x^{2}+y^{2}
$$

$$
d^{\prime}(t)=? \text { when } \quad t=3
$$

$$
\frac{d}{d t}\left[d^{2}=x^{2}+y^{2}\right]
$$

$$
2 d \cdot d^{\prime}(t)=2\left(x \cdot x^{\prime}(t)+2 x y y^{\prime}(t)\right.
$$

$$
d^{\prime}(t)=\frac{x \cdot x^{\prime}(t)+y \cdot y^{\prime}(t)}{d}
$$

$$
\begin{aligned}
& x=45+3(5)=60=4 \cdot 15 \\
& y=3(15)=45=3 \cdot 15 \\
& d=\sqrt{60^{2}+45^{2}}=15 \sqrt{4^{2}+3^{2}}=15 \sqrt{25}=15(5)=75
\end{aligned}
$$

$$
d^{\prime}(t)=\frac{60 \cdot 5+45(15)}{75}
$$

Find the work done by a force of 20 lb acting in the direction $\mathrm{N} 50^{\circ} \mathrm{W}$ in moving an object 4 ft due west.

$$
\begin{aligned}
& |\vec{D}|=4 \\
& |\vec{F}|=20 \\
& \begin{aligned}
\vec{W}=\vec{F} \cdot \vec{D} & =|\vec{F}||\vec{D}| \cos 40^{\circ} \\
& =20(4) \cos 40^{\circ}
\end{aligned}
\end{aligned}
$$

Find vector and parametric equations for the line passing through the points $A(1,-3)$ and $B(2,1)$.

$$
\begin{aligned}
& \overrightarrow{A B}=\langle 2-1,1-(-3)\rangle \\
&=\langle 1,4\rangle \text { parallel to the line. } \\
& \text { vector equation } \vec{r}(t)=\langle 1,-3\rangle+t\langle 1,4\rangle \\
& \text { or } \vec{r}(t)=\langle 2,1\rangle+t\langle 1,4\rangle
\end{aligned}
$$

parametric equation: $\quad \begin{aligned}\langle x, y\rangle & =\langle 1,-3\rangle+t\langle 1,4\rangle \\ \langle x, y\rangle & =\langle 1+t,-3+4 t\rangle\end{aligned}$

$$
\left\{\begin{array}{l}
x=1+t \\
y=-3+4 t
\end{array}\right.
$$

$7(\mathrm{~b}) y=\frac{\sqrt[5]{2 x-1}\left(x^{2}-4\right)^{2}}{\sqrt[3]{1+3 x}}$

$$
\begin{aligned}
& \ln y= \ln \frac{\sqrt[3]{1+3 x}}{2 x-1}\left(x^{2}-4\right)^{2} \\
&=\ln \left(\sqrt[5]{1+3 x}[\sqrt[5]{2 x-1})+\ln \left(x^{2}-4\right)^{(2)}-\ln (\sqrt[3]{1+3 x})\right. \\
&\left.\left.=\ln (2 x-1)^{(1 / 5}\right)+2 \ln \left(x^{2}-4\right)^{2}\right]-\ln [\sqrt[3]{1+3 x}] \\
&\left.=\frac{1}{5} \ln (2 x-1)+2 \ln (1+3 x)^{(1 / 3}\right) \\
&(\ln y)=\left(\frac{1}{5} \ln (2 x-1)+2 \ln (x+2)-\frac{1}{3} \ln (1+3 x)+2 \ln (x+2)-\frac{1}{3} \ln (1+3 x)\right) \\
& \frac{1}{y} \cdot y^{\prime}=\frac{1}{5} \frac{1}{2 x-1}(2)+\frac{2}{x-2}+\frac{2}{x+2}-\frac{1}{3} \frac{1}{1+3 x}(3) \\
& y^{\prime}=y\left(\frac{2}{5} \frac{1}{2 x-1}+\frac{2}{x-2}+\frac{2}{x+2}-\frac{1}{1+3 x}\right) \\
& y^{\prime}=\frac{5 \sqrt{2 x-1}\left(x^{2}-4\right)^{2}}{\sqrt[3]{1+3 x}}\left(\frac{2}{5} \frac{1}{2 x-1}+\frac{2}{x-2}+\frac{2}{x+2}-\frac{1}{1+3 x}\right)
\end{aligned}
$$

13. Use differentials to estimate $(1.09)^{10}$.

$$
\begin{aligned}
& f(a+\Delta x) \approx f^{\prime}(a) \Delta x+f(a) \\
& a=1, \quad \Delta x=1.09-1=0.09 \\
& f(x)=x^{\prime 0}, \quad f^{\prime}(x)=10 x^{9} \\
& f(1)=1, \quad f^{\prime}(1)=10 \\
& \begin{aligned}
f(a+\Delta x)=(1.09)^{10} \approx & f^{\prime}(1) \Delta x+f(1) \\
& =10.0 .09+1 \\
& =1.9
\end{aligned}
\end{aligned}
$$

15. Evaluate each limit:
(a) $\lim _{x \rightarrow 0} \frac{\sin x+\sin 2 x}{\sin 3 x}=\frac{0}{0}=\lim _{x \rightarrow 0} \frac{\cos x+2 \cos 2 x}{3 \cos 3 x}=\frac{1+2}{3}=1$
$7(\mathrm{c}) y(t)=\sin ^{-1} t, x(t)=\cos ^{-1}\left(t^{2}\right)$.

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\left(\sin ^{-1} t\right)^{\prime}}{\left(\cos ^{-1}\left(t^{2}\right)\right)^{\prime}}=\frac{\frac{1}{\sqrt{1-t^{2}}}}{-\frac{1}{\sqrt{1-\left(t^{2}\right)^{2}}}(2 t)}=-\frac{\sqrt{1-t^{4}}}{2 t \sqrt{1-t^{2}}}
$$

20. Find the area under the curve $y=x^{2}+3 x-2$ from 1 to 4 . Use equal subintervals and take x_{i}^{*} to be the right end-point of the i-th interval

21. Express the limit $\left[\begin{array}{l}\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}} \\ \lim _{a} \sum_{i=1}^{n} f(x) d x\left(x_{i}^{*}\right) \Delta x\end{array} \begin{array}{c}\Delta x=\frac{1}{n} \quad \begin{array}{c}\text {-integrating over an interval } \\ \text { of length } 1\end{array} \\ f\left(x_{i}^{*}\right)=\frac{1}{1+\left(\frac{i}{n}\right)^{2}}\end{array}\right.$

$$
\begin{aligned}
& \quad x_{i}^{*}=\frac{i}{n}, f(x)=\frac{1}{1+x^{2}}, a=0, b=1 \\
& a=x_{0}=\frac{0}{n}=0 \\
& b=x_{n}=\frac{n}{n}=1
\end{aligned}
$$

$$
\int_{0}^{1} \frac{1}{1+x^{2}} d x
$$

19. The top and the bottom margins of a poster are each 6 cm and the side margins are each 4 cm . If the area of the printed material on the poster is fixed at $384 \mathrm{~cm}^{2}$, find the dimensions of the poster with the smallest total area.

printed area: $(x-8)(y-12)=384 \quad y=\frac{384}{x-8}+12$
minimise

$$
A=x y
$$

$$
\begin{aligned}
& A= \frac{384 x}{x-8}+12 x \\
& A^{\prime}=384 \cdot \frac{x-8-x}{(x-8)^{2}}+12 \\
&=-8 \cdot 384 \cdot \frac{1}{(x-8)^{2}}+12=0 \\
& 12=8 \cdot 384 \cdot \frac{1}{(x-8)^{2}} \\
& \frac{1}{(x-8)^{2}}=\frac{12}{8 \cdot 384} \\
&(x-8)^{2}=\frac{8.384}{12}=\frac{2384}{3}=256 \\
&(x-8)^{2}=256 \\
& x-8=16, x=24
\end{aligned}
$$

9. A particle moves on a vertical line so that its coordinate at time t is $y=t^{3}-12 t+3, t \geq 0$.
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward? $(2, \infty)$
(c) Find the distance that particle travels in the time interval $0 \leq t \leq 3$

$$
\begin{aligned}
& v(t)=3 t^{2}-12 \\
& v(t)=3 t^{2}-12>0 \\
& \begin{array}{cc}
t^{2}>4, \quad t>2 & (v>0) \\
0<t<2 & (v<0)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\text { distance } & =|y(2)-y(0)|+|y(3)-y(2)| \\
& =|8-12(2)+3-3|+\left|3^{3}-12(3)+3-8+12(2)-3\right| \\
& =16+7=25
\end{aligned}
$$

