Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$. If either \vec{a} or \vec{b} is $\vec{0}$, we define $\vec{a} \cdot \vec{b} = 0$.

Example 1. If the vectors \vec{a} and \vec{b} have lengths 2 and 6, and the angle between them is $\pi/4$, find $\vec{a} \cdot \vec{b}$.

If $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$, then

 $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$

Example 2. Find $\vec{a} \cdot \vec{b}$ if $\vec{a} = \langle 2, 3 \rangle$ and $\vec{b} = \vec{i} - 3\vec{j}$

Two nonzero vectors \vec{a} and \vec{b} are called **perpendicular** or **orthogonal** if the angle between them is $\pi/2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$. **Example 3.** Find the angle between the vectors $\vec{a} = 6\vec{i} - 2\vec{j}$ and $\vec{b} = <1, 1>$.

Example 4. Determine whether the given vectors are orthogonal, parallel, or neither.

(a.)
$$\vec{a} = <1, -2>, \vec{b} = -2\vec{\imath} + 4\vec{\jmath}$$

(b.)
$$\vec{a} = <3, 1>, \vec{b} = <-3, 9>$$

(c.)
$$\vec{a} = -\vec{i} + 4\vec{j}, \vec{b} = 3\vec{i} - 2\vec{j}$$

Properties of the dot product If \vec{a} , \vec{b} , an \vec{c} are vectors and k is a scalar, then 1. $\vec{a} \cdot \vec{a} = |a|^2$ 2. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

- 3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ 4. $(k\vec{a})\cdot\vec{b} = k(\vec{a}\cdot\vec{b}) = \vec{a}(k\vec{b})$
- 5. $\vec{0} \cdot \vec{a} = 0$

 $\vec{PS} = \text{proj}_{\vec{a}}\vec{b}$ is called the vector projection of \vec{b} onto \vec{a} . $|\vec{PS}| = \text{comp}_{\vec{a}}\vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along \vec{a} . **→**

$$\operatorname{comp}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}$$

$$\operatorname{proj}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\vec{a}$$

Example 5. Find the scalar and the vector projections of $\vec{b} = <4, 2>$ onto $\vec{a} = \vec{i} + \vec{j}$.

Definition. Given the nonzero vector $\vec{a} = \langle a_1, a_2 \rangle$, the **orthogonal complement** of \vec{a} is the vector $\vec{a}^{\perp} = \langle -a_2, a_1 \rangle$.

Vectors \vec{a} and \vec{a}^{\perp} are orthogonal and $|\vec{a}|=|\vec{a}^{\perp}|$

The distance from the point P to the line L

$$|PQ| = \operatorname{comp}_{\overrightarrow{AB}^{\perp}} \overrightarrow{AP}$$

Example 6. Find the distance from the point (0,4) to the line 2x + 5y = -3.