Section 1.2 The dot product

Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$. If either \vec{a} or \vec{b} is $\overrightarrow{0}$, we define $\vec{a} \cdot \vec{b}=0$.

Example 1. If the vectors \vec{a} and \vec{b} have lengths 2 and 6 , and the angle between them is $\pi / 4$, find $\vec{a} \cdot \vec{b}$.

If $\vec{a}=<a_{1}, a_{2}>$ and $\vec{b}=<b_{1}, b_{2}>$, then

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}
$$

Example 2. Find $\vec{a} \cdot \vec{b}$ if $\vec{a}=<2,3>$ and $\vec{b}=\vec{\imath}-3 \vec{\jmath}$

Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\pi / 2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.
Example 3. Find the angle between the vectors $\vec{a}=6 \vec{\imath}-2 \vec{\jmath}$ and $\vec{b}=\langle 1,1\rangle$.

Example 4. Determine whether the given vectors are orthogonal, parallel, or neither.
(a.) $\vec{a}=<1,-2>, \vec{b}=-2 \vec{\imath}+4 \vec{\jmath}$
(b.) $\vec{a}=<3,1>, \vec{b}=<-3,9>$
(c.) $\vec{a}=-\vec{\imath}+4 \vec{\jmath}, \vec{b}=3 \vec{\imath}-2 \vec{\jmath}$

Properties of the dot product If \vec{a}, \vec{b}, an \vec{c} are vectors and k is a scalar, then

1. $\vec{a} \cdot \vec{a}=|a|^{2}$
2. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
3. $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
4. $(k \vec{a}) \cdot \vec{b}=k(\vec{a} \cdot \vec{b})=\vec{a}(k \vec{b})$
5. $\overrightarrow{0} \cdot \vec{a}=0$

$\overrightarrow{P S}=\operatorname{proj}_{\vec{a}} \vec{b}$ is called the vector projection of \vec{b} onto \vec{a}.
$|\overrightarrow{P S}|=\operatorname{comp}_{\vec{a}} \vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along \vec{a}.

$$
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}
$$

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}
$$

Example 5. Find the scalar and the vector projections of $\vec{b}=<4,2>$ onto $\vec{a}=\vec{\imath}+\vec{\jmath}$.

Definition. Given the nonzero vector $\vec{a}=<a_{1}, a_{2}>$, the orthogonal complement of \vec{a} is the vector $\vec{a}^{\perp}=<-a_{2}, a_{1}>$.

Vectors \vec{a} and \vec{a}^{\perp} are orthogonal and $|\vec{a}|=\left|\vec{a}^{\perp}\right|$

The distance from the point P to the line L

$$
|P Q|=\operatorname{comp}_{\overrightarrow{A B}{ }^{\perp}} \overrightarrow{A P}
$$

Example 6. Find the distance from the point $(0,4)$ to the line $2 x+5 y=-3$.

