Unapter 2 . Limits and rates of change

Section 2.3 Calculating limits using the limit laws

Limit laws Suppose that c is a constant and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ where n is a positive integer
7. $\lim _{x \rightarrow a} c=c$
8. $\lim _{x \rightarrow a} x=a$
9. $\lim _{x \rightarrow a} x^{n}=a^{n}$ where n is a positive integer
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ where n is a positive integer
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ where n is a positive integer

Example 1. Given that $\lim _{x \rightarrow a} f(x)=2, \lim _{x \rightarrow a} g(x)=-1$, and $\lim _{x \rightarrow a} h(x)=10$. Find the limits that exist.

1. $\lim _{x \rightarrow a}[2 f(x)-g(x)-h(x)]=\lim _{x \rightarrow a}\left(2 f(x)-\lim _{x \rightarrow a} g(x)-\lim _{x \rightarrow a} h(x)\right.$

$$
\begin{aligned}
& =2 \lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)-\lim _{x \rightarrow a} h(x) \\
& =2(2)-(-1)-10=-5
\end{aligned}
$$

2. $\lim _{x \rightarrow a} \frac{g(x)}{h(x)-2 f(x)}$

$$
=\frac{\lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} h(x)-2 \lim _{x \rightarrow a} f(x)}=\frac{-1}{10-2(2)}=-\frac{1}{6}
$$

Example 2. Evaluate the given limit and justify each step.

1. $\lim _{x \rightarrow 4}\left(2 x^{2}+4 x-1\right)=2\left(4^{2}\right)+4(4)-1=2(16)+16-1=47$
2. $\lim _{y \rightarrow 3} \frac{3\left(8 y^{2}-1\right)}{2 y^{2}(y-1)^{4}}=\frac{3\left(8 \cdot\left(3^{2}\right)-1\right)}{2\left(3^{2}\right)(3-1)^{4}}=\frac{3(72-1)}{2(9)(16)}=\frac{71}{96}$
3. $\lim _{x \rightarrow 3} \sqrt[4]{x^{2}+2 x+1}=\sqrt[4]{3^{2}+2(3)+1}=\sqrt[4]{16}=2$

If f is a polynomial or a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$

Example 3. Evaluate each limit, if it exist.

1. $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1}=\left|\frac{0}{0}\right|=\lim _{x \rightarrow-1} \frac{(x-2)(x+1)}{x+1}=\lim _{x \rightarrow-1}(x-2)=-1-2=-3$
2. $\lim _{x \rightarrow-1} \frac{x^{2}-x-3}{x+1}=\frac{1+1-3}{0}=\frac{-1}{0}$ DUE
3. $\lim _{t \rightarrow 1} \frac{t^{3}-t}{t^{2}-1}=\frac{0}{0}=\lim _{t \rightarrow 1} \frac{t\left(t^{2}-1\right)}{t^{2}-1}=\lim _{t \rightarrow 1} t=1$
4. $\lim _{t \rightarrow 9} \frac{9-t}{3-\sqrt{t}}=\frac{0}{0}=\lim _{t \rightarrow 9} \frac{(9-t)(3+\sqrt{t})}{(3-\sqrt{t})(3+\sqrt{t})}=\lim _{t \rightarrow 9} \frac{(9-t)(3+\sqrt{t})}{3^{2}-(\sqrt{t})^{2}}=\lim _{t \rightarrow 9} \frac{(9-t)(3+\sqrt{t})}{9-t}$

$$
=\lim _{t \rightarrow 9}(3+\sqrt{t})=3+\sqrt{9}=6
$$

5. $\lim _{x \rightarrow 0} \frac{x}{\sqrt{1+3 x}-1}=\frac{0}{0}=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{(\sqrt{1+3 x}-1)(\sqrt{1+3 x}+1)}=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x+1})}{(\sqrt{1+3 x})^{2}-1^{2}}$

$$
=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{x+3 x-x}=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+3 x}+1)}{3 x}=\lim _{x \rightarrow 0} \frac{\sqrt{1+3 x}+1}{3}=\frac{2}{3}
$$

6. $\lim _{t \rightarrow 2} \mathbf{r}(t), \mathbf{r}(t)=\left\langle\frac{4-t}{2-\sqrt{t}}, \frac{t^{2}-4}{t-2}\right\rangle$

$$
\begin{gathered}
=\left\langle\lim _{t \rightarrow 2} \frac{4-t}{2-\sqrt{t}}, \lim _{t \rightarrow 2} \frac{t^{2}-4}{t-2}\right\rangle=\left\langle\lim _{t \rightarrow 2} \frac{(4-t)(2+\sqrt{t})}{(2-\sqrt{t})(2+\sqrt{t})}, \lim _{t \rightarrow 2} \frac{(t-2)(t+2)}{t-2}\right\rangle \\
\left.=\left\langle\lim _{t \rightarrow 2} \frac{(4-t)(2+\sqrt{t})}{4-t}, \lim _{t \rightarrow 2}(t+2)\right\rangle=\lim _{t \rightarrow 2}(2+\sqrt{t}), 4\right\rangle \\
=\langle 2+\sqrt{2}, 4\rangle
\end{gathered}
$$

$$
\begin{aligned}
& \text { 7. } \lim _{x \rightarrow-3}|x+3|=\frac{0}{\int} \\
& |x+3|= \begin{cases}x+3, & \text { if } x+3 \geqslant 0 \\
-(x+3), & \text { if } x+3<0\end{cases} \\
& \begin{array}{l}
\lim _{\substack{x \rightarrow-3^{+}}}|x+3|=\lim _{\substack{x \rightarrow-3}}(x+3)=0 \\
\lim _{x \rightarrow-3}|x+3|=\lim _{x \rightarrow-3}(-(x+3))=0
\end{array} \\
& x<-3 \text { or } x+3<0
\end{aligned}
$$

8. $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ DNE

$$
\begin{aligned}
& |x-2|=\left\{\begin{array}{l}
x-2, \text { if } \quad x-2 \geqslant 0 \\
-(x-2) \text { if } \quad x-2<0
\end{array}\right. \\
& \lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}=\lim _{\substack{x \rightarrow 2 \\
(x>2)}} \frac{x-2}{x-2}=\lim _{x \rightarrow 2} 1=1
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=\lim _{\substack{x \rightarrow 2 \\
x<2}} \frac{-(x-2)}{x-2}= & \lim _{x \rightarrow 2}(-1)
\end{array}=-1\right)
$$

Example 4. Let

$$
f(x)= \begin{cases}x^{2}-2 x+2, & \text { if } x<1 \\ 3-x, & \text { if } x \geq 1\end{cases}
$$

Find $\lim _{x \rightarrow 1} f(x)$ DNE
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{\substack{x \rightarrow 1 \\ x<1}} f(x)=\lim _{x \rightarrow 1}\left(x^{2}-2 x+2\right)=1^{2}-2(1)+2=1$
$\begin{aligned} & \lim _{x \rightarrow 1^{+}} f(x)=\lim _{\substack{x \rightarrow 1 \\ x>1}} f(x)=\lim _{x \rightarrow 1}(3-x)=3-1=2 \\ & 2 \neq 1\end{aligned}$

Theorem If $f(x) \leq g(x)$ for all x in an open interval that contains a (except possibly at a) and the limits of f an g both exist as x approaches a, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

The Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ for all x in an open interval that contains a (except possibly at a) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Example 5. Use the Squeeze Theorem to show that $\lim _{x \rightarrow 0} x^{2} \underline{\cos (20 \pi x)}=0$.

$$
-1\left(x^{2}\right) x^{2} \cos 20 \pi x \leq 1\left(x^{2}\right)
$$

$$
\begin{aligned}
& -x^{2} \leq x^{2} \cos 20 \pi x \leq x^{2} \\
& \lim _{x \rightarrow 0} x^{2}=0 \\
& \lim _{x \rightarrow 0}\left(-x^{2}\right)=0 \\
& \text { By the squeeze Theorem, } \lim _{x \rightarrow 0} x^{2} \cos 20 \pi x=0
\end{aligned}
$$

