Section 2.7 Derivatives and rates of change

The tangent line.

If a curve C has equation y = f(x) and we want to find the tangent to C at the point P(a, f(a)), then we consider a nearby point Q(x, f(x)), where $x \neq a$, and compute the slope of the secant line PQ:

$$m_{PQ} = \frac{f(x) - f(a)}{x - a}$$

Then we let Q approach P along the curve C by letting x approach a.

If m_{PQ} approaches a number m, then we define the **tangent** t to be the line through P with slope m.

Definition. The **tangent line** to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that this limit exists. Then the equation of the tangent line is

$$y = m(x - a) + f(a)$$

Let h = x - a, then x = a + h, so the slope of the secant line PQ is

$$m_{PQ} = \frac{f(a+h) - f(a)}{h}$$

1

Then the slope of the tangent line becomes

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Example 1. Find the equation of the tangent line to the curve $y = \sqrt{2x-3}$ at the point (2,1).

Velocity.

Suppose an object moves along a straight line according to an equation of motion s = f(t), where s is the displacement of the object from the origin at time t. Function f is called the **position function** of the object.

average velocity
$$=\frac{\text{displacement}}{\text{time}} = \frac{f(a+h) - f(a)}{h}$$

Then the **velocity** or **instantaneous velocity** at time t = a is

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Example 2. The displacement of an object moving in a straight line is given by $s(t) = 1 + 2t + t^2/4$ (t is in seconds).

- (a) Find the average velocity over the time period [1,3]
- (b) Find the instantaneous velocity when t=1

Example 3. The object is moving upward. Its height after t sec is given by $h(t) = 58t - 0.83t^2$ (a) What is the maximum height reached by the object?

(b) Find the instantaneous velocity at t = 1

Definition. The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exist.

Example 1. Find f'(a) if $f(x) = x^2 + 3x - 1$.

Geometric interpretation of the derivative. f'(a) is the slope of the tangent line to y = f(x) at the point (a, f(a)).

Example 2. Find an equation of the tangent line to $f(x) = x^2 + 3x - 1$ at the point (-1,-3).

Other interpretations of the derivative.

- f'(a) is the instanteneous rate of change of y = f(x) with respect to x when x = a.
- if s = f(t) is the position function of a particle that moves along a straight line, then f'(a) is the velocity of the particle at time t = a

Other rates of change.

Suppose y is a quantity that depends on another quantity x or y = f(x). If x changes from x_1 to x_2 , then the change in x (also called the **increment** of x) is

$$\Delta x = x_2 - x_1$$

and the corresponding change in y is

$$\Delta x = f(x_2) - f(x_1)$$

The difference quotient

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

is called the average rate of change of y with respect to x over the interval $[x_1, x_2]$.

The instantaneous rate of change of y with respect to x at $x = x_1$ is equal to

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x_1)$$