Section 2.7 Derivatives and rates of change

The tangent line.
If a curve C has equation $y=f(x)$ and we want to find the tangent to C at the point $P(a, f(a))$, then we consider a nearby point $Q(x, f(x))$, where $x \neq a$, and compute the slope of the secant line $P Q$:

$$
m_{P Q}=\frac{f(x)-f(a)}{x-a}
$$

Then we let Q approach P along the curve C by letting x approach a.

If $m_{P Q}$ approaches a number m, then we define the tangent t to be the line through P with slope m.
Definition. The tangent line to the curve $y=f(x)$ at the point $P(a, f(a))$ is the line through P with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided that this limit exists. Then the equation of the tangent line is

$$
y=m(x-a)+f(a)
$$

Let $h=x-a$, then $x=a+h$, so the slope of the secant line $P Q$ is

$$
m_{P Q}=\frac{f(a+h)-f(a)}{h}
$$

Then the slope of the tangent line becomes

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Example 1. Find the equation of the tangent line to the curve $y=\sqrt{2 x-3}$ at the point $(2,1)$.

Velocity.

Suppose an object moves along a straight line according to an equation of motion $s=f(t)$, where s is the displacement of the object from the origin at time t. Function f is called the position function of the object.

$$
\text { average velocity }=\frac{\text { displacement }}{\text { time }}=\frac{f(a+h)-f(a)}{h}
$$

Then the velocity or instantaneous velocity at time $t=a$ is

$$
v(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Example 2. The displacement of an object moving in a straight line is given by $s(t)=1+2 t+t^{2} / 4$ (t is in seconds).
(a) Find the average velocity over the time period $[1,3]$
(b) Find the instantaneous velocity when $t=1$

Example 3. The object is moving upward. Its height after $t \mathrm{sec}$ is given by $h(t)=58 t-0.83 t^{2}$
(a) What is the maximum height reached by the object?
(b) Find the instantaneous velocity at $t=1$

Definition. The derivative of a function f at a number a, denoted by $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if the limit exist.

Example 1. Find $f^{\prime}(a)$ if $f(x)=x^{2}+3 x-1$.

Geometric interpretation of the derivative. $f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at the point $(a, f(a))$.

Example 2. Find an equation of the tangent line to $f(x)=x^{2}+3 x-1$ at the point $(-1,-3)$.

Other interpretations of the derivative.

- $f^{\prime}(a)$ is the instanteneous rate of change of $y=f(x)$ with respect to x when $x=a$.
- if $s=f(t)$ is the position function of a particle that moves along a straight line, then $f^{\prime}(a)$ is the velocity of the particle at time $t=a$

Other rates of change.

Suppose y is a quantity that depends on another quantity x or $y=f(x)$. If x changes from x_{1} to x_{2}, then the change in x (also called the increment of x) is

$$
\Delta x=x_{2}-x_{1}
$$

and the corresponding change in y is

$$
\Delta x=f\left(x_{2}\right)-f\left(x_{1}\right)
$$

The difference quotient

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

is called the average rate of change of y with respect to x over the interval $\left[x_{1}, x_{2}\right]$.

The instantaneous rate of change of y with respect to x at $x=x_{1}$ is equal to

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(x_{1}\right)
$$

