A function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f.

Example 1. Find the derivative of the function $f(x)=\frac{1-2 x}{3+x}$ using the definition of the derivative.

Definition. A function f is differentiable at a if $f^{\prime}(a)$ exists.

It is differentiable on an open interval (a, b) if it is differentiable at every number in the interval. Example 2. Where is the function $f(x)=|x-2|$ differentiable?

Theorem. If f is differentiable at a, then f is continuous at a

When is the function not differentiable at $x=a$?

- f has a "corner" or "kink" at a
- f is discontinuous at a
- the curve $y=f(x)$ has a vertical tangent line at $x=a$

Besides being able to find the function $f(x)$ from the function $f(x)$, you can also determine the graph of $f(x)$ from the graph of $f(x)$.

Things to look for when sketching $f(x)$ from the given graph of $f(x)$:

- Values of slopes of tangent lines to $f(x)$
- Points where $f(x)$ has horizontal tangents
- Intervals where $f(x)$ is increasing or decreasing
- Places where $f(x)$ is leveling off

Example 3. Given the graph of $f(x)$ below, sketch the graph of $f^{\prime}(x)$.

Higher derivatives.

Leibnitz notations: $y^{\prime}(x)=\frac{d y}{d x}$
Then

$$
\begin{gathered}
y^{\prime \prime}(x)=\left(y^{\prime}(x)\right)^{\prime}=\frac{d^{2} y}{d x^{2}} \\
y^{\prime \prime \prime}(x)=\left(y^{\prime \prime}(x)\right)^{\prime}=\frac{d^{3} y}{d x^{3}} \\
y^{I V}(x)=y^{(4)}(x)=\frac{d^{4} y}{d x^{4}} \\
y^{(n)}(x)=\frac{d^{n} y}{d x^{n}}
\end{gathered}
$$

Example 4. If $f(x)=2 x^{2}-x^{3}$, find $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, f^{(4)}$.

