Section 3.1 Derivatives of plynomials and exponentials functions.

$$
\begin{gathered}
(C)^{\prime}=0, C \text { is a constant } \\
(x)^{\prime}=1 \\
\left(x^{n}\right)^{\prime}=n x^{n-1} \text { for any rational } n \\
\left(e^{x}\right)^{\prime}=e^{x}
\end{gathered}
$$

Definition of the number e.
e is the number such that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

$$
e \approx 2.7182818284590452
$$

Differentiation formulas

Suppose c is a constant and both functions $f(x)$ and $g(x)$ are differentiable.

1. $(c f(x))^{\prime}=c f^{\prime}(x)$,
2. $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$,
3. $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$,

Example 1. Differentiate each function.

1. $f(x)=x^{5}-4 x^{3}+2 x-3$
2. $f(x)=3 x^{2 / 3}-2 x^{5 / 2}+x^{-3}$
3. $f(x)=x^{2} \sqrt[3]{x^{2}}$
4. $f(x)=\frac{2}{\sqrt[3]{x^{2}}}-\frac{1}{x \sqrt[3]{x}}$
5. $f(x)=x^{1.2}+e^{1.2}$
6. $f(x)=x^{e}+e^{x}$

Example 2. Find an equation of the tangent line to the curve $y=x^{4}+1$ that is parallel to the line $32 x-y=15$.

Example 3. Let

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & x \leq 2 \\
m x+b & \text { if } & x>2
\end{array}\right.
$$

Find the values for m and b that make f differentialbe everywhere.

Example 4. Find equations of both lines through the point $(2,-3)$ that are tangent to the parabola $y=x^{2}+x$.

