Section 3.10 Linear approximations and differentials

The equation of the tangent line to the graph of $f(x)$ at the point $(a, f(a))$ can be used to approximate values of f that are near a.

This is called the linear approximation or tangent line approximation of f at a

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

The function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linearization of f at a.
Example 1. Find the linearization $L(x)$ of the function $f(x)=\frac{1}{\sqrt{2+x}}$ at $a=0$

Example 2. Find the linear approximation of the function $f(x)=\sqrt{1-x}$ at $a=0$ and use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$.

Differentials.

We are using the notation $\frac{d y}{d x}$ to denote the derivative of y with respect to x, and it gives the slope of the tangent line at x. Now, we will actually view $d y$ and $d x$ as separate entities, called differentials.

Definition Let $y=f(x)$, where f is a differentiable function. Then the differential $d x$ is an independent variable; that is $d x$ can be given the value of any real number. The differential $d y$ is then defined in terms of $d x$ by the equation

$$
d y=f^{\prime}(x) d x
$$

Example 3. Find $d y$ if $y=x \tan x$.

Example 4.

(a.) Find $d y$ if $y=\sqrt{1-x}$
(b.) Find the value of $d y$ when $x=0$ and $d x=.02$

Suppose that $f(a)$ is a known number and the approximate value is to be calculated for $f(a+\Delta x)$ where Δx is small. Then

$$
f(a+\Delta x) \approx f(a)+d y=f(a)+f^{\prime}(a) \Delta x
$$

Example 3. Use differentials to find an approximate value for (a.) $\sqrt{36.1}$
(b.) $\sin 59^{\circ}$

