Section 3.1 Derivatives of plynomials and exponentials functions.

$$
\begin{array}{c|c}
(C)^{\prime}=0, C \text { is a constant } & \left(x^{2}\right)^{\prime}=2 x \\
(x)^{\prime}=1 & \left(x^{3}\right)^{\prime}=3 x^{2} \\
\left(x^{n}\right)^{\prime}=n x^{n-1} \text { for any rational } n & \left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}
\end{array}
$$

Definition of the number $e$. $e$ is the number such that

## Differentiation formulas

Suppose $c$ is a constant and both functions $f(x)$ and $g(x)$ are differentiable.

1. $(c f(x))^{\prime}=c f^{\prime}(x)$,
2. $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$,
3. $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$,

Example 1. Differentiate each function.

1. $f(x)=x^{5}-4 x^{3}+2 x-3.3\left(x^{3}\right)^{\prime}+2(x)^{\prime}-(3)^{\pi^{0}}$
$=5 x^{4}-4\left(3 x^{2}\right)+2$
$=5 x^{4}-12 x^{2}+2$
2. $\begin{aligned} f(x)= & =3 x^{2 / 3}-2 x^{5 / 2}+x^{-3} \\ f^{\prime}(x) & =3 \cdot \frac{2}{3} x^{\frac{2}{3}-1}-2 \cdot \frac{5}{2} x^{\frac{5}{2}-1}+(-3) x^{-3-1} \\ & =2 x^{-1 / 3}-5 x^{3 / 2}-3 x^{-4}\end{aligned}$
3. $f(x)=x^{2}\left(\sqrt[3]{x^{2}}\right)=x^{2} \cdot x^{\frac{2}{3}}=x^{2+\frac{2}{3}}=x^{\frac{8}{3}}$
$f^{\prime}(x)=\left(x^{\frac{8}{3}}\right)^{\prime}=\frac{8}{3} x^{\frac{8}{3}-1}=\frac{8}{3} x_{1}^{\frac{5}{3}}$
4. $f(x)^{(x)^{2}}=\frac{x \sqrt[2]{x} 2}{\sqrt[3]{x^{2}}}-\frac{1}{x \sqrt{x}}=2 x^{-2 / 3}-\underbrace{\frac{1}{x \cdot x^{1 / 3}}}_{x^{1+\frac{1}{3}}=x^{\frac{4}{3}}}=2 x^{-2 / 3}-x^{-4 / 3}$

$$
\begin{aligned}
f^{\prime}(x) & =2\left(x^{-2 / 3}\right)^{\prime}-\left(x^{-4 / 3}\right)^{\prime} \\
& =2\left(-\frac{2}{3}\right) x^{-2 / 3-1}-\left(-\frac{4}{3}\right) x^{-\frac{4}{3}-1} \\
& =-\frac{4}{3} x^{-\frac{5}{3}}+\frac{4}{3} x^{-\frac{7}{3}}
\end{aligned}
$$

5. $f(x)=x^{1.2}+e^{1.2}$

$$
\begin{aligned}
& f(x)=x^{1.2}+e^{1.2} \\
& f^{\prime}(x)=\left(x^{1.2}\right)^{\prime}+\left(e^{1.2}\right)^{\prime}=1.2 x^{1.2-1}+0 \\
&=1.2 x^{0.2}
\end{aligned}
$$

6. $f(x)=x^{e}+e^{x}$

$$
\begin{aligned}
& f(x)=x^{e}+e^{x} \\
& f^{\prime}(x)=\underbrace{\left(x^{e}\right)^{\prime}}_{\substack{\text { power } \\
\text { function }}}+\underbrace{\left(e^{x}\right)^{\prime}}_{\begin{array}{c}
\text { exponential } \\
\text { function }
\end{array}} \\
&=e^{e x^{e-1}+e^{x}}
\end{aligned}
$$

Example 2. Find an equation of the tangent line to the curve $y=x^{4}+1$ that is parallel to the line $32 x-y=15$.

$$
\begin{aligned}
& y=32 x-15 \Rightarrow \text { slope }=32 \\
& \text { slope of tangent line }=\left(x^{4}+1\right)^{\prime}=\frac{4 x^{3}=32}{x^{3}=8 \Rightarrow x=2 .}
\end{aligned}
$$

Tangent line@(a,f(a))

$$
\begin{aligned}
y-f(a)=f^{\prime}(a)(x-a) \Rightarrow & a=2 \\
& f(2)=2^{4}+1=17
\end{aligned}
$$

$$
y-17=32(x-2)
$$

Example 3. Let

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & x \leq 2 \\
m x+b & \text { if } & x>2
\end{array} \Rightarrow f^{\prime}(x)= \begin{cases}2 x, & x \leq 2 \\
m, & x>2\end{cases}\right.
$$

Find the values for $m$ and $b$ that make $f$ differential everywhere.
$f(x)$ must be continuous @ $x=2$
$f^{\prime}(x)$ must be continuous@ $x=2$.

$$
\begin{aligned}
& f^{\prime}\left(2^{-}\right)=f^{\prime}\left(2^{+}\right) \\
& f^{\prime}(2)=2(2)=4 \mid m=4 \\
& x<2 \\
& f^{\prime}(2)=m
\end{aligned}
$$

update $f(x)$ :

$$
\begin{aligned}
& f(x)= \begin{cases}x^{2}, & x \leq 2 \\
4 x+b, & x>2\end{cases} \\
& \underbrace{\lim _{x \rightarrow 2^{-}} f(x)}_{2^{2}}=\underbrace{\lim _{x \rightarrow 2^{+}} f(x)}_{4(2)+b}
\end{aligned}
$$

$$
\Rightarrow \quad 4=8+b \Rightarrow b=-4
$$

Example 4. Find equations of both lines through the point (2,-3) that are tangent to the parabola $y=x^{2}+x$.


Let the tangent passes through the point where $x=a$.

$$
y(a)=a^{2}+a
$$

an equation of the tangent line through (a, $\left.a^{2}+a\right)$ is

$$
\begin{array}{r}
y-\underset{a^{2}+a}{y(a)}=\frac{y^{\prime}(a)}{2 a+1}(x-a) \\
y^{\prime}(x)=2 x+1, \quad y^{\prime}(a)=2 a+1
\end{array}
$$

$y-\left(a^{2}+a\right)=(2 a+1)(x-a), a$ is an number
Plug in $x=2$ and $y=-3$ :

$$
-3-\left(a^{2}+a\right)=(2 a+1)(2-a)
$$

$$
-3-a^{2}-a=4 a-2 a^{2}+2-a
$$

$$
2 a^{2}-3 a-2-3-a^{2}-a=0
$$

$$
\begin{aligned}
& a^{2}-4 a-5=0 \\
& (a-5)(a+1)=0 \\
& a_{1}=5, \quad a_{2}=-1
\end{aligned}
$$

Tangent lines:

$$
\begin{aligned}
& y-(25+5)=(10+1)(x-5) \\
& y-30=11(x-5) \\
& y-(1-1)=(2(-1)+1)(x+1) \\
& y=-(x+1)
\end{aligned}
$$

