Section 3.2 The product and quotient rules.
$(u v w)^{\prime}=u^{\prime} v w+u v^{\prime} w+u v w^{\prime}$
Product Rule: $\underline{(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)}$
Quotient Rule: $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}$
Example 1. Let $P(x)=F(x) G(x)$ and $Q(x)=\frac{F(x)}{G(x)}$, where F and G are the functions whose graphs ar, given below.

Find

1. $P^{\prime}(2)$
$P^{\prime}=(F G)^{\prime}=F^{\prime} G+G^{\prime} F$
$P^{\prime}(2)=F^{\prime}(2) G(2)+G^{\prime}(2) F(2)=O(2)+3\left(\frac{1}{2}\right)=\frac{3}{2}$
2. $Q^{\prime}(7)(x)=\left(\frac{F}{G}\right)^{\prime}=\frac{F^{\prime} G-G^{\prime} F}{G^{2}}$

$$
\begin{aligned}
& Q^{\prime}(x)=\left(\frac{F}{G}\right)=\frac{F^{\prime}(7) G(7)-G^{G^{2}}(7) F(7)}{G^{2}(7)}=\frac{\frac{1}{4}(1)-\left(-\frac{2}{3}\right)(5)}{1}=\frac{1}{4}+\frac{10}{3}=\frac{43}{12} \\
& Q^{\prime}(7)=\frac{1}{1}
\end{aligned}
$$

Example 2. If $f(x)=e^{x} g(x)$, where $g(0)=2$ and $g^{\prime}(0)=5$, find $f^{\prime}(0)$.

$$
\begin{aligned}
f^{\prime}(x)=\left(e^{x} g(x)\right)^{\prime} & =\left(e^{x}\right)^{\prime} g(x)+g^{\prime}(x) e^{x} \\
f^{\prime}(x) & =e^{x} g(x)+g^{\prime}(x) e^{x} \\
f^{\prime}(0) & =e^{p^{\prime}} g(0)^{2}+g^{\prime}(0)^{5} e^{\prime \prime}=2+5=7
\end{aligned}
$$

Example 3. Differentiate.

1. $\begin{aligned} & f(x)=(x+2 \sqrt{x}) e^{x} \\ & f^{\prime}(x)=(x+2 \sqrt{x})^{\prime} e^{x}+(x+2 \sqrt{x})\left(e^{x}\right)^{\prime}\end{aligned}$
$=\left(1+2 \frac{1}{x} x^{-1 / 2}\right) e^{x}+(x+2 \sqrt{x}) e^{x}$
$=\left(1+\frac{1}{\sqrt{x}}\right) e^{x}+(x+2 \sqrt{x}) e^{x}$
$\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \Rightarrow e \approx 2.8273 \ldots$
2. $\begin{aligned} f(x) & =\frac{x^{2}-2}{2 x+3} \overbrace{}^{2 x} \\ f^{\prime}(x) & =\frac{\left(x^{2}-2\right)^{\prime}(2 x+3)-\left(x^{2}-2\right)(2 x+3)^{\prime}}{2} \\ (2 x+3)^{2} & =\frac{(2 x)(2 x+3)-\left(x^{2}-2\right)(2)}{(2 x+3)^{2}}\end{aligned}$
3. $f(x)=\left(\frac{1}{x^{2}}+\frac{3}{x^{4}}\right)\left(x+5 x^{3}\right)=\frac{\left(x^{2}+3\right) x\left(1+5 x^{2}\right)}{x^{34}}=\frac{\left(x^{2}+3\right)\left(1+5 x^{2}\right)}{x^{3}}=\left(x^{2}+3\right)\left(1+5 x^{2}\right) x^{-3}$ $f^{\prime}(x)=\left[\left(x^{2}+3\right)\left(1+5 x^{2}\right) x^{-3}\right]^{\prime}=\overbrace{\left.x^{2}+3\right)^{\prime}}^{2 x}\left(1+5 x^{2}\right) x^{-3}+\left(x^{2}+3\right)(\underbrace{\left(1+5 x^{2}\right)^{\prime}}_{10 x} x^{-3}$
$+\left(x^{2}+3\right)\left(1+5 x^{2}\right)\left(x^{-3}\right)^{\prime}$ $=\frac{+\left(x^{2}+3\right)\left(1+5 x^{2}\right)(\underbrace{\left.x^{-3}\right)} '^{\prime-4}}{2 x\left(1+5 x^{2}\right) x^{-3}+\left(x^{2}+3\right)(10 x)\left(x^{-3}\right)+\left(x^{2}+3\right)\left(1+5 x^{2}\right)\left(-3 x^{-4}\right)}$

Example 4. Find an equation of the tangent line to the curve $y=\frac{1+x}{1+e^{x}}$ at the point $\left(0, \frac{1}{2}\right)^{\prime}$.
$y^{\prime}(x)=\frac{(1+x)^{\prime}\left(1+e^{x}\right)-\left(1+e^{x}\right)^{\prime}(1+x)}{\left(1+e^{x}\right)^{2}}=\frac{1+e^{x}-e^{x}(x+x)}{\left(1+e^{x}\right)^{2}}=\frac{1-x e^{x}}{\left(1+e^{x}\right)^{2}}$
@ $x=0: \quad y^{\prime}(0)=\frac{1-0 e^{\prime}}{\left(1+e^{9)^{\prime 2}}\right.}=\frac{1}{4}$
Tangent line: $y-y(0)=y^{\prime}(0)(x-0)$
$y-\frac{1}{2}=\frac{1}{4} x$

