Section 3.5 Implicit differentiation.

Some functions are defined implicitly by a relation between x and y, where x is the independent variable and y depends on x. In order to find the derivative of y with respect to x, we can use the method of implicit differentiation. This consists of differentiating both sides of the relation with respect to x and then solving the resulting equation for y^{\prime}.

Example 1. Find $d y / d x$ by implicit differentiation.

1. $x^{2}-x y+y^{3}=8$
2. $x e^{y}=x-y$
3. $\tan (x-y)=\frac{y}{1+x^{2}}$

Example 2. Let y be the independent variable and x be the dependent variable. Use implicit differentiation to find $d x / d y$ if

$$
\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y
$$

Derivatives of the inverse trigonometric functions.

Let us find $(\arcsin x)^{\prime}$:

$$
\begin{aligned}
\frac{d}{d x} \arcsin x & =\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \arccos x & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arctan x & =\frac{1}{1+x^{2}} & \frac{d}{d x} \cot ^{-1} x & =-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x & =\frac{1}{x \sqrt{x^{2}-1}} & \frac{d}{d x} \csc ^{-1} x & =-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

Example 3. Find the derivative.

1. $f(x)=\arccos \left(x^{2}\right)$
2. $f(x)=\arctan \sqrt{\frac{1-x}{1+x}}$
