Section 3.6 Derivatives of logarithmic functions

$$
\begin{array}{r}
\frac{d}{d x} \ln x=\frac{1}{x} \\
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a} \ln g(x)=\frac{g^{\prime}(x)}{g(x)}=\frac{1}{g(x)} g^{\prime}(x)
\end{array}
$$

Example 1. Differentiate each function
1.

1. $f(x)=\ln \left(\sin ^{2} x\right)$
2.

$$
\text { 2. } \begin{aligned}
& \frac{d}{d x} \log _{3}\left(\tan x^{2}\right)=\frac{1}{\tan \left(x^{2}\right) \ln 3}\left(\tan x^{2}\right)^{\prime} \\
&=\frac{1}{\tan \left(x^{2}\right) \ln 3} \sec ^{2}\left(x^{2}\right)\left(x^{2}\right)^{\prime} \\
&=\frac{1}{\tan \left(x^{2}\right) \ln 3} \sec ^{2}\left(x^{2}\right)(2 x)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \ln x=-\infty \\
& \lim _{x \rightarrow \infty} \ln x=\infty
\end{aligned}
$$

4. $f(x)=\sqrt{\frac{9-x^{2}}{9+x^{2}}}$
logarithmic differentiation

$$
\ln f=\ln \sqrt{\frac{9-x^{2}}{9+x^{2}}}
$$

$$
\ln f=\frac{1}{2} \ln \frac{9-x^{2}}{9+x^{2}}
$$

$$
\ln (x y)=\ln x+\ln y
$$

$$
\ln f=\frac{1}{2} \ln \frac{(3-x)(3+x)}{9+x^{2}}
$$

$$
\begin{aligned}
\left.\frac{\ln (x y)=\ln x+\ln y}{\ln \frac{x}{y}=\ln x-\ln y}\right] \ln f= & \frac{1}{2}\left[\ln (3-x)+\ln (3+x)-\ln \left(9+x^{2}\right)\right] \\
& \text { Differentiate for } x:
\end{aligned}
$$

Differentiate for x :
solve for f^{\prime} :

$$
\begin{aligned}
& f^{\prime}=f \cdot \frac{1}{2}\left[\frac{-1}{3-x}+\frac{1}{3+x}-\frac{2 x}{9+x^{2}}\right] \\
& f^{\prime}=\frac{1}{2} \sqrt{\frac{9-x^{2}}{9+x^{2}}}\left(\frac{-1}{3-x}+\frac{1}{3+x}-\frac{2 x}{9+x^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } f(x)=\ln |x| \\
& \begin{array}{l}
f(x)=\ln |x|=\left\{\begin{array}{l}
\ln x, \text { if } x>0 \\
\ln (-x), \text { if } x<0
\end{array}\right.
\end{array} \\
& (\ln (x))^{\prime}=\left\{\begin{array}{l}
(\ln x)^{\prime}, \text { if } x>0 \\
(\ln (-x))^{\prime}, \text { if } x<0 \\
\left\{\frac{1}{x}, \text { if } x>0\right.
\end{array}=\left\{\begin{array}{l}
\frac{1}{x}, \text { if } x>0 \\
\frac{1}{-x}(-x)^{\prime}, \text { if } x<0
\end{array}=\left\{\begin{array}{l}
\frac{1}{x}, \text { if } x>0 \\
\frac{-1}{-x}, \text { if } x<0
\end{array}\right.\right.\right. \\
& =\left\{\begin{array}{ll}
\frac{1}{x}, & \text { if } x>0 \\
\frac{1}{x}, & \text { if } x<0
\end{array} \quad(\ln |x|)^{\prime}=\frac{1}{x}, x \neq 0\right. \\
& \lim _{x \rightarrow \infty} \ln x=\infty
\end{aligned}
$$

Example 2. Find y^{\prime} and $y^{\prime \prime}$ if

$$
\begin{aligned}
& y=\sqrt{x} \ln x . \\
& \frac{\sqrt{x}}{x}=\frac{\sqrt{x}}{(\sqrt{x})^{2}} \\
& \begin{aligned}
y^{\prime}=(\sqrt{x} \ln x)^{\prime} & =(\sqrt{x})^{\prime} \ln x+\sqrt{x}(\ln x)^{\prime} \\
& =\frac{1}{2} x^{-1 / 2} \ln x+\sqrt{x} \cdot \frac{1}{x}
\end{aligned} \\
& =\frac{1}{2} x^{-1 / 2} \ln x+\sqrt{x} \cdot \frac{1}{x} \\
& y^{\prime}=\frac{1}{2} \frac{\ln x}{\sqrt{x}}+\frac{1}{\sqrt{x}}=\frac{2+\ln x}{2 \sqrt{x}} \\
& y^{\prime \prime}=\left(\frac{2+\ln x}{2 \sqrt{x}}\right)^{\prime}=\frac{(2+\ln x)^{\prime} 2 \sqrt{x}-(2 \sqrt{x})^{\prime}(2+\ln x)}{(2 \sqrt{x})^{2}} \\
& =\frac{\frac{1}{x} 2 \sqrt{x}-2 \frac{1}{2} x^{-1 / 2}(2+\ln x)}{4 x}=\frac{\frac{2}{\sqrt{x}}-\frac{2+\ln x}{\sqrt{x}}}{4 x}=-\frac{\ln x}{4 x \sqrt{x}}
\end{aligned}
$$

Example 3. Find $\frac{d}{d x}\left(\sqrt{2-3^{x}}+\pi^{-x}+x^{e}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(2-3^{x}\right)^{-1 / 2}\left(2-3^{x}\right)^{\prime}+\left(\pi^{-x}\right)^{\prime}+\left(x^{e}\right)^{\prime} \\
& =\frac{1}{2}\left(2-3^{x}\right)^{-1 / 2}\left(-3^{x} \ln 3\right)+\pi^{-x} \ln \pi(-x)^{-1}+e x^{e-1} \\
& =-\frac{1}{2}\left(2-3^{x}\right)^{-1 / 2} 3^{x} \ln 3-\pi^{-x} \ln \pi+e x^{e-1}
\end{aligned}
$$

1. Take the logarithm of both sides of an equation.
2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y^{\prime}.

$$
[f(x)]^{g(x)}=e^{g(x) \ln [f(x)]}
$$

Example 4. Differentiate each function

Example 5. Find y^{\prime} if $x^{y}=y^{x}$.

$$
\begin{aligned}
& \ln \left(x^{(2)}=\ln \left(y^{8}\right)\right. \\
& \frac{d}{d x} y \ln x=\frac{d x}{d x} \ln y
\end{aligned}
$$

differentiate both parts for x,
assume that $y=y(x)$

$$
\begin{aligned}
& y^{\prime} \ln x+y(\ln x)^{\prime}=x^{\prime} \ln y+x(\ln y)^{\prime} \\
& y^{\prime} \ln x+y \cdot \frac{1}{x}=\ln y+x \cdot \frac{1}{y} \cdot y^{\prime} \\
& y^{\prime} \ln x-\frac{x}{y} y^{\prime}=\ln y-\frac{y}{x}
\end{aligned}
$$

solve for y^{\prime} :

$$
\begin{aligned}
& y^{\prime}\left(\ln x-\frac{x}{y}\right)=\ln y-\frac{y}{x} \\
& y^{\prime}=\frac{\ln y-\frac{y}{x}}{\ln x-x / y}=\frac{\frac{x \ln y-y}{x}}{\frac{y \ln x-x}{y}} \\
& =\frac{x \ln y-y}{x} \cdot \frac{y}{y \ln x-x}=\frac{y(x \ln y-y)}{x(y \ln x-x)}
\end{aligned}
$$

