Definition. Let c be a number in the domain D of a function f. Then $f(c)$ is the

- absolute maximum value of f on D, if $f(c) \geq f(x)$ for all x in D.
- absolute minimum value of f on D, if $f(c) \leq f(x)$ for all x in D.

Definition. A number $f(c)$ is a

- local maximum value, if $f(c) \geq f(x)$ when x is near c.
- local minimum value, if $f(c) \leq f(x)$ when x is near c.

Example 1. Sketch the graph of the function f that is continuous on $[0,3]$ and has the absolute maximum at 0 , absolute minimum at 3 , local minimum at 1 , local maximum at 2 .

The extreme value theorem. If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

Fermat's theorem. If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$

Definition. A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Example 2. Find the critical numbers of the function.
(a.) $f(x)=4 x^{3}-9 x^{2}-12 x+3$
(b.) $f(x)=\frac{x}{x^{2}+1}$

If f has a local extremum at c, then c is a critical number of f.

The closed interval method. To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

1. Find the values of f at the critical numbers of f in (a, b)
2. Find $f(a)$ and $f(b)$
3. The largest number of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Example 3. Find the absolute maximum and absolute minimum values of f on the given interval.
(a.) $f(x)=x^{2}+\frac{2}{x},[1 / 2,2]$
(b.) $f(x)=\cos x+\sin x,[0, \pi / 3]$
(c.) $f(x)=x \mathrm{e}^{-x},[0,2]$

