- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval
- f has a local maximum at the point, where its derivative changes from positive to negative.
- f has a local minimum at the point, where its derivative changes from negative to positive.

Example 1. Given the graph of the function f.

(a.) What are the x-coordinate(s) of the points where $f^{\prime}(x)$ does not exist?
(b.) Identify intervals on which $f^{\prime}(x)>0$.
$f^{\prime}(x)<0$.
(c.) Identify the x coordinates of the points where $f(x)$ has a local maximum.

A local minimum.

What does $f^{\prime \prime}$ say about f ?

- If $f^{\prime \prime}(x)>0$ on an interval, then f is concave upward (CU) on that interval
- If $f^{\prime \prime}(x)<0$ on an interval, then f is concave downward (CD) on that interval

Definition. A point where curve changes its direction of concavity is called an inflection point

Example 2. Given the graph of $f^{\prime}(x)$.

(a.) Identify intervals on which f is increasing.

Is decreasing.
(b.) Identify the x coordinates of the points where f has a local maximum.

A local minimum.
(c.) Identify intervals on which f is concave upward.

Concave downward.
(d.) Find the x-coordinates of inflection points.

Example 3. Sketch the graph of a function that satisfies all of the given conditions.

1. $f^{\prime}(5)=0$
2. $f^{\prime}(x)<0$ when $x<5$
3. $f^{\prime}(x)>0$ when $x>5$,
4. $f^{\prime \prime}(2)=f^{\prime \prime}(8)=0$
5. $f^{\prime \prime}(x)<0$ when $x<2$ or $x>8$
6. $f^{\prime \prime}(x)>0$ when $2<x<8$
7. $\lim _{x \rightarrow \infty} f(x)=3$
8. $\lim _{x \rightarrow-\infty} f(x)=-3$

The second derivative test. Suppose $f^{\prime \prime}$ is continuous near c.

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local min at c.
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local max at c.
bf Example 4. For the given functions, find the following:
3. Domain
4. Asymptotes
5. Intercepts
6. Intervals of increase/decrease
7. Local Extrema
8. Intervals of Concavity
9. Inflection Points
10. Sketch a graph

$$
f(x)=x^{4}-6 x^{2}
$$

$$
f(x)=\frac{x}{(x-1)^{2}}
$$

$$
f(x)=e^{-\frac{1}{x+1}}
$$

