Section 4.3 How derivatives affect the shape of the graph.

- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval
- f has a local maximum at the point, where its derivative changes from positive to negative.
- f has a local minimum at the point, where its derivative changes from negative to positive.

Example 1. Given the graph of the function f.

(a.) What are the x-coordinate(s) of the points where $f^{\prime}(x)$ does not exist?
$x=C$
(b.) Identify intervals on which $f^{\prime}(x)>0$. f is increaing $\quad(c, e) \cup(g, k)$
$f^{\prime}(x)<0$. \& is decreaving $(a, c) \cup(e, g) \cup(k, m)$
(c.) Identify the x coordinates of the points where $f(x)$ has a local maximum.

$$
x=e, x=t
$$

A local minimum.

$$
x=c, \quad x=g
$$

What does $f^{\prime \prime}$ say about f ?

- If $f^{\prime \prime}(x)>0$ on an interval, then f is concave upward (CU) on that interval
- If $f^{\prime \prime}(x)<0$ on an interval, then f is concave downward (CD) on that interval

Definition. A point where curve changes its direction of concavity is called an inflection point

Example 2. Given the graph of $f^{\prime}(x)$.

$$
(b, e) \cup(0, i) \cup(l, m)
$$

Is decreasing. $\quad\left(f^{\prime}<0\right)$

$$
(a, b) \cup(e, 0) \cup(i, l)
$$

(b.) Identify the x coordinates of the points where f has a local maximum. $x=e, x=i$

A local minimum.

$$
x=b, x=0, x=l
$$

(c.) Identify intervals on which f is concave upward. $\quad f^{\prime}$ is increaning

$$
(a, c) \cup(f, h) \cup(k, m)
$$

Concave downward. f'is decreasing $(c, f) \cup(h, k)$
(d.) Find the x-coordinates of inflection points

$$
x=c, x=h, x=f, x=k
$$

Example 3. Sketch the graph of a function that satisfies all of the given conditions.

1. $f^{\prime}(5)=0$
2. $f^{\prime}(x)<0$ when $x<5$
3. $f^{\prime}(x)>0$ when $x>5$,
4. $f^{\prime \prime}(2)=f^{\prime \prime}(8)=0$
5. $f^{\prime \prime}(x)<0$ when $x<2$ or $x>8$
6. $f^{\prime \prime}(x)>0$ when $2<x<8$
7. $\lim _{x \rightarrow \infty} f(x)=3 \quad y=3$ horizonal arymptote
8. $\lim _{x \rightarrow-\infty} f(x)=-3$
$y=-3$ horizontal arymptole
when $x \rightarrow-\infty$

The second derivative test. Suppose $f^{\prime \prime}$ is continuous near c.

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local min at c.
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(f)<C D$, then f has a local max at c.
bf Example 4. For the given functions, find the following:
3. Domain
4. Asymptotes
5. Intercepts
6. Intervals of increase/decrease
7. Local Extrema
8. Intervals of Concavity
9. Inflection Points
10. Sketch a graph
$f(x)=x^{4}-6 x^{2}$
$f(x)=x^{2}-6 x^{2}$

- Domain asymptotes
- intercepts
$\begin{aligned} & \text { intercepts } \\ & x \text {-intercepts: } \quad x^{4}-6 x^{2}=0 \\ & x^{2}\left(x^{2}-6\right)=0\end{aligned}$ $x^{2}\left(x^{2}-6\right)=0$
$x=0$ or $x= \pm \sqrt{6}$
y-intercept: $y=0, x=0$.
- $f^{\prime}(x)=\frac{4 x^{3}-12 x}{4}=\frac{0}{4}$
$x^{3}-12 x=0$
$x\left(x^{2}-3\right)=0$
$x=0, \quad x= \pm \sqrt{3} \quad$ critical points.
$x(x-\sqrt{3})(x+\sqrt{3})>0$
$2(2 \cdot \sqrt{3})(2+\sqrt{3})>0$ $1(1-\sqrt{3})(1+\sqrt{3})<0$

$$
\begin{aligned}
& \\
&-1(-1-\sqrt{3})(-1+\sqrt{3})>0
\end{aligned}
$$

$$
\begin{aligned}
& -1(-1-\sqrt{3})(-1+\sqrt{3})>0 \\
& -2(-2-\sqrt{3})(-2+\sqrt{3})<0
\end{aligned}
$$

$$
\begin{aligned}
& -1(-1-\sqrt{3})(-1+\sqrt{3})>0 \quad \text { local local } \begin{array}{l}
\text { local } \\
-2(-2-\sqrt{3})(-2+\sqrt{3})<0 \quad \text { min max }
\end{array} \\
& f_{i} \text { increasing on }(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty) \left\lvert\, \begin{array}{l}
f(\sqrt{3})=(\sqrt{1})^{4}-6(16)^{2} \\
=9-18=-9
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{lll}
f_{i} \text { increasing on }(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty) & \begin{array}{l}
f(13) \\
f_{i} \text { decreasing on }(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})
\end{array} & \begin{array}{l}
-9 \\
f(-\sqrt{3})=-9
\end{array}
\end{array}
$$

$$
\frac{x^{2}-12}{12}=\frac{0}{12} \Rightarrow x^{2}-1>0 \text { or } x= \pm 1 \text { inflection points. }
$$

concavity. $f^{\prime \prime}(x)=\frac{12 x^{2}-12}{12}=\frac{0}{12} \Rightarrow x^{2}-1>0$ or $x= \pm 1$ inflection points.
$(x-1)(x+1)>0$

$$
\begin{aligned}
& f(-1)=f(1) \\
& =1-6=-5 \\
& \text { inflection points }
\end{aligned}
$$

$$
f(x)=\frac{x}{(x-1)^{2}}
$$

- Domain $x \neq 1$
- $x=1$ is the vertical asymptote
$\lim _{x \rightarrow \infty} \frac{x}{(x-1)^{2}}=0$
$\lim _{x \rightarrow-\infty} \frac{x}{(x-1)^{2}}=0$ $y=0$ is the heriantal argupptote.
- Intercenfle: $(0,0)$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x}{(x-1)^{2}}=\infty$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x}{(x-1)^{2}}=\infty$
$f^{\prime}(x)=\left(\frac{x}{(x-1)^{2}}\right)^{\prime}=\frac{(x-1)^{2}-2 x(x-1)}{(x-1)^{43}}$

$$
=\frac{x-1-2 x}{(x-1)^{3}}=\frac{-1-x}{(x-1)^{3}}=0
$$

$x=1$ not a critical point (not in the
$-1-x=0, x=-1$-critical point
Intervals of increase /decrease
$-\frac{1+x}{(x-1)^{3}}>0$

fits increasing on $(-1,1),-\infty(1, \infty)$
$f_{\text {is }}$ decreasing on $(-\infty,-) \cup$
local min @ $(1,-1 / 4)$
$f(-1)=\frac{-1}{(-2)^{2}}=-\frac{1}{4}$
$f^{\prime \prime}(x)=\left(-\frac{1+x}{(x-1)^{3}}\right)^{\prime}=-\frac{(x-1)^{3}-3(x-1)^{2}(1+x)}{(x-1)^{6} 4^{4}}=-\frac{x-1-3-3 x}{(x-1)^{4}}=-\frac{-2 x-4}{(x-1)^{4}}=\frac{2 x+4}{(x-1)^{4}}$
inflection point $2 x+4=0$ or $x=-2$
f is Cl on $\frac{2 x+4}{(x-1)^{4}}>0$
f is Cl on $(-2,1) \cup(1, \infty)$ f is $C D$ on $(-\infty,-2)$

$$
f(-2)=\frac{-2}{(2-1)^{2}}=-\frac{2}{9}
$$

$$
\begin{aligned}
& f(-2)=\frac{4}{(2-1)^{2}} \\
& \left(-2,-\frac{2}{9}\right) \text { infection point. }
\end{aligned}
$$

$$
-2 / 9<-\frac{1}{4}
$$

$$
\begin{aligned}
& f(x)=e^{-\frac{1}{2}} \\
& f(x)=e^{-\frac{1}{x+1}}>0
\end{aligned}
$$

- Domain: $x \neq-1$

Range: $\quad(0, \infty)$

- no x intercepts, $f(0)=e^{-1} \approx 0.37$
- asymptotes: vertical asymptote $x=-1$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} e^{-\frac{1}{x+1}}=e^{0}=1 \\
& \lim _{x \rightarrow-\infty} e^{-\frac{1}{x+1}}=e^{0}=1
\end{aligned}
$$

Horizontal asymptotes $\quad y=1$

- Derivative: $\left(e^{-\frac{1}{x+1}}\right)^{\prime}=e^{-\frac{1}{x+1}} \cdot\left(-\frac{1}{x+1}\right)^{\prime}=\frac{e^{-\frac{1}{x+1}}}{(x+1)^{2}}>0, x \neq-1$
increases on $(-\infty,-1) \cup(-1, \infty)$
no local min/max
- And derivative $\left[\begin{array}{c}\left.e^{-\frac{1}{x+1}}(x+1)^{-2}\right]^{\prime}=e^{-\frac{1}{x+1}}\left(-\frac{1}{x+1}\right)^{\prime}(x+1)^{-2} \\ -\frac{1}{x+1}\end{array}\right.$

$$
\begin{aligned}
& L \\
&= e^{-\frac{1}{x+1}}\left[\frac{1}{(x+1)^{2}} \frac{1}{(x+1}(-2)(x+1)^{-3}\right. \\
&= e^{-\frac{1}{x+1}} \frac{1-2(x+1)}{(x+1)^{4}}=\frac{e^{-\frac{1}{x+1}}}{(x+1)^{4}}(-2 x-1)=0 \\
& x=-\frac{1}{2} \quad \text { inflection }
\end{aligned}
$$

$-2 x-1=0$ or $x=-\frac{1}{2}$ inflection point
f is $C U$ if $f^{\prime \prime}>0$

