Section 4.4 Indeterminate forms and L'Hospitalg's rule

L'Hospital's Rule Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ for points close to a (except, possibly a). Suppose that
$\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$ or $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\left\lvert\, \frac{0}{0}\right. \text { or } \frac{\infty}{\infty} \left\lvert\,=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\right.
$$

Example 1. Find the limit.

$$
\text { 1. } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{3}}=\left|\frac{0}{0}\right|=\lim _{x \rightarrow 0} \frac{(x \cos x-\sin x)^{\prime}}{\left(x^{3}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{\cos x-x \sin x-\cos x}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{-x \sin x}{3 x^{3}} \\
&=-\lim _{x \rightarrow 0} \frac{\sin x}{3 x}=\left|\frac{0}{0}\right|=-\lim _{x \rightarrow 0} \frac{(\sin x)^{\prime}}{(3 x)^{\prime}}=-\lim _{x \rightarrow 0} \frac{\cos x}{3}=-\frac{1}{3}
\end{aligned}
$$

2. $\lim _{x \rightarrow 0} \frac{e^{5 x}-1-5 x}{x^{2}}=\left|\frac{0}{0}\right|=\lim _{x \rightarrow 0} \frac{\left(e^{5 x}-1-5 x\right)^{\prime}}{\left(x^{2}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{e^{5 x}(5)-5}{2 x}\left|\frac{0}{0}\right|$

$$
=\lim _{x \rightarrow 0} \frac{\left(5 e^{5 x}-5\right)^{\prime}}{(2 x)^{\prime}}=\lim _{x \rightarrow 0} \frac{25 e^{5 x}}{2}=\frac{25}{2}
$$

3. $\lim _{x \rightarrow \infty} \frac{\ln (\ln 6 x)}{6 x}\left|\frac{\infty}{\infty}\right|=\lim _{x \rightarrow \infty} \frac{(\ln (\ln 6 x))^{\prime}}{(6 x)^{\prime}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{\ln (6 x)}(\ln 6 x)^{\prime}}{6}=\lim _{x \rightarrow \infty} \frac{\frac{1}{\ln 6 x} \cdot \frac{1}{6 x} \cdot 6}{6}$

$$
=\lim _{x \rightarrow \infty} \frac{1}{6 x \ln b x}=\frac{1}{\infty}=0
$$

Indeterminate products If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0$ or $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$, then

$$
\lim _{x \rightarrow a} f(x) g(x)=|\infty \cdot 0|=\lim _{x \rightarrow a} \frac{f(x)}{1 / g(x)}=\lim _{x \rightarrow a} \frac{g(x)}{1 / f(x)}=\left\lvert\, \frac{0}{0}\right. \text { or } \left.\frac{\infty}{\infty} \right\rvert\,
$$

and now we can use L'Hospital's Rule.

$$
\begin{aligned}
& \text { Example 2. Evaluate } \\
& \begin{array}{l}
\text { Example 2. Evaluate } \\
\text { 1. } \lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}
\end{array}|0 \cdot \infty|\left[\tan \frac{\pi x}{2}=\frac{1}{\cot \frac{\pi x}{2}}\right] \quad \csc x=\frac{1}{\sin x} \\
& =\lim _{x \rightarrow 1} \frac{1-x}{\cot \frac{\pi x}{2}}\left|\frac{0}{0}\right|=\lim _{x \rightarrow 1} \frac{(1-x)^{\prime}}{\left(\cot \frac{\pi x}{2}\right)^{\prime}}=\lim _{x \rightarrow 1} \frac{+1}{+\csc ^{2} \frac{\pi x}{2} \frac{\pi}{2}}=\frac{2}{\pi} \lim _{x \rightarrow 1} \sin ^{2} \frac{\pi x}{2} \\
& =\frac{2}{\pi} \sin ^{2} \frac{\pi}{2}=\frac{2}{\pi} \\
& \lim _{\substack{x \rightarrow-\infty \\
\lim _{x \rightarrow-\infty} e^{-x}=\infty}} x=0 \lim _{x \rightarrow-\infty} x^{2} e^{2 x}|\infty \cdot 0|=\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-2 x}}\left|\frac{\infty}{\infty}\right|=\lim _{x \rightarrow-\infty} \frac{\left(x^{2}\right)^{\prime}}{\left(e^{-2 x}\right)^{\prime}}=\lim _{x \rightarrow-\infty} \frac{2 x}{-2 e^{-2 x}}\left|\frac{\infty}{\infty}\right| \\
& =\lim _{x \rightarrow-\infty} \frac{(x)^{\prime}}{\left(-e^{-2 x}\right)^{\prime}}=\lim _{x \rightarrow-\infty} \frac{1}{2 e^{-2 x}}=\lim _{x \rightarrow-\infty} \frac{1}{2} e^{2 x}=0
\end{aligned}
$$

Indeterminate differences If we have to find $\lim _{x \rightarrow a}(f(x)-g(x))=|\infty-\infty|\left(\lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\right.$ ∞), then we have to convert the difference into a quotient (by using a common denominator or rationalization, or factoring out a common factor) so that we have an indeterminate form of type $\left\lvert\, \frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty} \right\rvert\,$ and we can use L'Hospital's Rule.

Example 3. Evaluate $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right) \quad|\infty-\infty|$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{x \ln x-(x-1)}{(x-1) \ln x}=\lim _{x \rightarrow 1} \frac{x \ln x-x+1}{(x-1) \ln x}=\left(\frac{0}{0} /\right. \\
& =\lim _{x \rightarrow 1} \frac{(x \ln x-x+1)^{\prime}}{[(x-1) \ln x]^{\prime}}=\lim _{x \rightarrow 1} \frac{\ln x+x \frac{1}{x}-1}{\ln x+(x-1) \frac{1}{x}}=\lim _{x \rightarrow 1} \frac{\ln x}{\ln x+\frac{x-1}{x}} \\
& =\lim _{x \rightarrow 1} \frac{\ln x}{\ln x+1-x^{-1}} / \frac{0}{0}=\lim _{x \rightarrow 1} \frac{(\ln x)^{1}}{\left(\ln x+1-x^{-1}\right)^{\prime}} \\
& =\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}
\end{aligned}
$$

Indeterminate powers $\lim _{x \rightarrow a}[f(x)]^{g(x)}=\mid 0^{0}$ or ∞^{0} or $1^{\infty} \mid=\lim _{x \rightarrow a} \mathrm{e}^{g(x) \ln f(x)}=\mathrm{e}^{\lim _{x \rightarrow a}[g(x) \ln f(x)]}$. Now let's find

$$
\begin{aligned}
& \lim _{x \rightarrow a}[g(x) \ln f(x)]=|0 \cdot \infty|=\lim _{x \rightarrow a} \frac{\ln f(x)}{\frac{1}{(x)}}=\left\lvert\, \frac{0}{0}\right. \text { or } \left.\frac{\infty}{\infty} \right\rvert\,=b \\
& \operatorname{Then}_{\lim _{x \rightarrow a}[f(x)]^{g(x)}=\mathrm{e}^{b}} \quad[f(x)]^{g(x)}=e^{g(x) \ln f(x)}
\end{aligned}
$$

Example 4. Evaluate

1. $\lim _{x \rightarrow 0}\left(1+x^{2}\right)^{\frac{1}{x}} \cdot=\left(\lim _{x \rightarrow 0} \longrightarrow e^{\frac{1}{x} \ln \left(1+x^{2}\right)}=e^{\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x}}=e^{0}=1\right.$

$$
\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x}\left|\frac{0}{0}\right|=\lim _{x \rightarrow 0} \frac{\left(\ln \left(1+x^{2}\right)\right)^{\prime}}{x^{\prime}}=\lim _{x \rightarrow 0} \frac{\frac{2 x}{1+x^{2}}}{1}=\lim _{x \rightarrow 0} \frac{2 x}{1+x^{2}}
$$

2. $\lim _{x \rightarrow \infty} x^{7 / x}=\lim _{x \rightarrow \infty} e^{\frac{7}{x} \ln x}=e^{\lim _{x \rightarrow \infty} \frac{7 \ln x}{x}}=e^{0}=1$

$$
\lim _{x \rightarrow \infty} \frac{7 \ln x}{x}\left|\frac{\infty}{\infty}\right|=7 \lim _{x \rightarrow \infty} \frac{(\ln x)^{\prime}}{x^{\prime}}=7 \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=7 \lim _{x \rightarrow \infty} \frac{1}{x}=
$$

3. $\begin{aligned} & \lim _{x \rightarrow 0}(1+x)^{\frac{2}{x}}|1 \infty|=\lim _{x \rightarrow 0} e^{\frac{2}{x} \ln (1+x)}=e^{\lim _{x \rightarrow 0} \frac{2 \ln (1+x)}{x}}=e^{2} \\ & \lim _{x \rightarrow 0} \frac{(2 \ln (1+x)}{x}=\left|\frac{0}{0}\right|=2 \lim _{x \rightarrow 0} \frac{(\ln (1+x))^{\prime}}{x^{\prime}}=2 \lim _{x \rightarrow 0} \frac{1}{1+x}=2\end{aligned}$
