Sigma notation.

Definition. If $a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}$ are real numbers and m and n are integers such that $m \leq n$, then

$$
a_{m}+a_{m+1}+a_{m+2}+\ldots+a_{n}=\sum_{i=m}^{n} a_{i}
$$

Example 1. Write the sum in sigma notation.

1. $1+2+4+8+16+32$
2. $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}$
3. $\frac{3}{7}+\frac{4}{8}+\frac{5}{9}+\frac{6}{10}+\ldots+\frac{23}{27}$

Example 2. Write the sum in expanded form

1. $\sum_{i=0}^{4} 3^{i}$
2. $\sum_{i=1}^{n} 2 i$, here n is an integer

Theorem. If c is any constant (this means that c does not depend on i), then

1. $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$
2. $\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}$
3. $\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}$

- $\sum_{i=1}^{n} 1=n$
- $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
- $\sum_{i=1}^{n} i^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$
- $\sum_{i=1}^{n} a r^{i-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

Example 3. Evaluate

1. $\sum_{i=1}^{n}(3+2 i)^{2}$
2. $\sum_{i=1}^{n}\left(2 i+2^{i}\right)$

Problem. Find the area of the region S that lies under the curve $y=f(x)$ from a to b.

$$
S=\{(x, y): a \leq x \leq b, 0 \leq y \leq f(x)\}
$$

We start by subdividing the interval $[a, b]$ into smaller subintervals by choosing partition points x_{0}, x_{1}, x_{2}, \ldots, x_{n} so that

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b
$$

Then the n subintervals are

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right] \ldots\left[x_{n-1}, x_{n}\right]
$$

This subdivision is called a partition of $[a, b]$ and we denote it by P. We use the notation Δx_{i} for the length of the i th subinterval $\left[x_{i-1}, x_{i}\right]$.

$$
\Delta x_{i}=x_{i}-x_{i-1}
$$

The length of the longest subinterval is denoted by $\|P\|$ and is called the norm of P.

$$
\|P\|=\max \left\{\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}\right\}
$$

By drawing the lines $x=a, x=x_{1}, \ldots x=b$, we use the partition P to divide the region S into strips S_{1}, S_{2}, \ldots, S_{n}.

We choose a number x_{i}^{*} in each subinterval $\left[x_{i-1}, x_{i}\right]$ and construct a rectangle R_{i} with base Δx_{i} and height $f\left(x_{i}^{*}\right)$.

The area of the i th rectangle R_{i} is

$$
A_{i}=f\left(x_{i}^{*}\right) \Delta x_{i}
$$

The n rectangles $R_{1}, R_{2}, \ldots, R_{n}$ form a polygonal approximation to the region S.

$$
A(S) \approx \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

This approximation becomes better and better as the strips become thinner and thinner, that is, as $\|P\| \rightarrow 0$. Then

$$
A=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

Example 4. Determine a region whose area is equal to

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}
$$

DO NOT EVALUATE THE LIMIT.

Example 5. Find the area under the curve $y=1 / x^{2}$ from 1 to 2 . Use four subintervals of equal length and take x_{i}^{*} to be the midpoint of the i th subinterval.

Example 6. Find the area under the curve $y=x^{2}+3 x-2$ from 1 to 4 . Use equal subintervals and take x_{i}^{*} to be the right endpoint of the i th subinterval.

