Theorem. Suppose f is continuous on $[a, b]$.

1. If $g(x)=\bigodot_{a} f(t) d t$, then $g^{\prime}(x)=f(x) .[g(x)$ is an antiderivative for $f(x)]$.
2. $\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$ where F is an antiderivative of f.

Example 1. Find the derivative of the function.

1. $g(x)=\int_{\pi}^{2} \frac{1}{1+t^{4}} d t$

$$
g^{\prime}(x)=\frac{1}{1+x^{4}}
$$

2. $f(x)=\int_{x}^{4}(2+\sqrt{t})^{8} d t=-\int_{4}^{x}(2+\sqrt{t})^{8} d t$

$$
f^{\prime}(x)=-(2+\sqrt{x})^{8}
$$

3. $y=\int_{\tan x}^{17} \sin \left(t^{4}\right) d t=-\int_{17}^{\tan x} \sin \left(t^{4}\right) d t \quad|u=\tan x|$

$$
\begin{aligned}
y^{\prime} & =-\sin [u(x)]^{4} \cdot u^{\prime}(x) \\
& =-\sec ^{2} x \cdot \sin \left(\tan ^{4} x\right)
\end{aligned}
$$

Example 2. Evaluate the integral.

$$
\begin{aligned}
& \text { Example 2. Evaluate the integral. } \\
& \begin{aligned}
\int y^{n} d y=y_{n+1}^{n+1}+c^{1} & \int_{2}^{6} \frac{1+\sqrt{y}}{y^{2}} d y
\end{aligned}=\int_{2}^{6}(1+\sqrt{y}) y^{-2} d y=\int_{2}^{6}\left(y^{-2}+\frac{y^{1 / 2} \cdot y^{-2}}{\sqrt{y} \cdot y^{-2}}\right) d y \\
&=\int_{2}^{6}\left(y^{-2}+y^{-3 / 2}\right) d y=y^{1 / 2-2}=y^{-3 / 2} \\
&\left.=\left(-\frac{y^{-2+1}}{-2+1}+\frac{y^{-3 / 2+1}}{-3 / 2+1}\right]_{2}^{6}=2(6)^{-1 / 2}\right)-\left(-\frac{1}{2}-2 \cdot(2)^{-1 / 2}\right)=-\frac{1}{6}-\frac{2}{\sqrt{6}}+\frac{1}{2}+\frac{2}{\sqrt{2}}
\end{aligned}
$$

$$
\text { 2. } \int_{0}^{4}(4-t) \sqrt{t} d t=\int_{0}^{4}(4 \sqrt{t}-t \sqrt{t}) d t=\int_{0}^{4}\left(4 t^{1 / 2}-t^{3 / 2}\right) d t
$$

$$
=\left[4 \frac{t^{1 / 2+1}}{1 / 2+1}-\frac{t^{3 / 2+1}}{3 / 2+1}\right]_{0}^{4}=\left[4 \cdot \frac{2}{3} t^{3 / 2}-\frac{2}{5} \cdot t^{5 / 2}\right]_{0}^{4}
$$

$$
=\frac{8}{3} 4^{3 / 2}-\frac{2}{5} 4^{5 / 2}-0=\frac{8}{3} \cdot 8-\frac{2}{5} \cdot 32
$$

$$
\text { 3. } \int_{0}^{3}\left(2 \sin x-e^{x}\right) d x=\left[-2 \cos x-e^{x}\right]_{0}^{3}=-2 \cos 3-e^{3}-\left(-2 \cos 0^{1}-e^{9}\right)
$$

$$
=-2 \cos 3-e^{3}+3
$$

$$
\int a^{x} d x=\frac{a^{x}}{\ln a}+c
$$

4. $\left.\int_{0}^{4} 2^{s} d s=\frac{2^{5}}{\ln 2}\right]_{0}^{4}=\frac{2^{4}}{\ln 2}-\frac{2^{0}}{\ln 2}=\frac{15}{\ln 2}$
$\int \frac{d x}{1+x^{2}}=\arctan x+C$
5. $\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{8}{1+x^{2}} \frac{d x}{}=\left.8 \arctan x\right|_{1 / \sqrt{3}} ^{\sqrt{3}}=8\left(\arctan \sqrt{3}-\arctan \frac{1}{\pi / 3} \frac{1 / 6}{\sqrt{3}}\right)=8\left(\frac{\pi}{3}-\frac{\pi}{6}\right)$

$$
=\frac{8 \pi}{6}=\frac{4 \pi}{3}
$$

6. $\int_{1 / 2}^{1 / \sqrt{2}} \frac{4}{\sqrt{1-x^{-2}}} d x=\left.4 \arcsin x\right|_{1 / 2} ^{1 / \sqrt{2}}=4\left[\arcsin \frac{1}{\sqrt{2}}-\arcsin \frac{1}{2}\right]$ $\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+c$

$$
=4\left[\frac{\pi}{4}-\frac{\pi}{6}\right]=4 \frac{3 \pi-2 \pi}{12}=\frac{4 \pi}{12}=\frac{\pi}{3}
$$

$$
\begin{aligned}
& \text { 7. } \int_{0}^{2} f(x) d x \text {, where } f(x)= \begin{cases}x^{4} 0 \leq x<1 \\
x^{5} & 0 \leq x \leq 2\end{cases} \\
& =\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x=\int_{0}^{1} x^{4} d x+\int_{1}^{2} x^{5} d x \\
& =\left.\frac{x^{5}}{5}\right|_{0} ^{1}-\left.\frac{x^{6}}{6}\right|_{1} ^{2}=\frac{1}{5}-0-\frac{2^{6}}{6}+\frac{1}{6} \\
& =\sqrt{\frac{1}{5}-\frac{63}{6}}
\end{aligned}
$$

Example 3. Find the area of the region enclosed by the parabola $y=2 x-x^{2}$ and the line $y=0$.

$$
\left.\begin{array}{l}
2 x-x^{2}=0 \\
x(2-x)=0, x_{1}=0, x_{2}=2,0 \leq x \leq 2 \\
A
\end{array}\right)=\int_{0}^{2}\left(2 x-x^{2}\right) d x .
$$

