Section 5.4 Indefinite integrals and the Net Change Theorem.

Indefinite Integrals.

Both parts of the Fundamental Theorem establish connections between antiderivatives and definite integrals.
We need a convenient notation for antiderivatives that makes them easy to work with. Because of the relation between antiderivatives and integrals given by the Fundamental Theorem, the notation $\int f(x) d x$ is traditionally used for an antiderivative of f and is called an indefinite integral. Thus

$$
\int f(x) d x=F(x) \quad \text { means } \quad F^{\prime}(x)=f(x)
$$

So we can regard an indefinite integral as representing an entire family of functions (one antiderivative for each value of the constant).
NOTE: $\int_{a}^{b} f(x) d x$ is a number while $\int f(x) d x$ is a function.

Table of indefinite integrals

a) $\int a d x=a x+C, a$ is a constant
b) $\int x d x=\frac{x^{2}}{2}+C$
c) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$
d) $\int \frac{d x}{x}=\ln |x|+C$
e) $\int e^{x} d x=e^{x}+C$
f) $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
g) $\int \sin x d x=-\cos x+C$
h) $\int \cos x d x=\sin x+C$
i) $\int \tan x d x=-\ln |\cos x|+C=\ln |\sec x|+C$
j) $\int \cot x d x=\ln |\sin x|+C=-\ln |\csc x|+C$
k) $\int \sec ^{2} x d x=\tan x+C$

1) $\int \csc ^{2} x d x=-\cot x+C$
m) $\int \sec x \tan x d x=\sec x+C$
n) $\int \csc x \cot x d x=-\csc x+C$
o) $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C$
p) $\int \frac{d x}{\sqrt{x^{2}+a}}=\ln \left|x+\sqrt{x^{2}+a}\right|+C$
q) $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C$
r) $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C$

Example 1. Evaluate the integral.

1. $\int\left(x^{1.3}+7 x^{2.6}\right) d x$
2. $\int\left(\frac{1+r}{r}\right)^{2} d r$
3. $\int \sec t(\sec t+\tan t) d t$

Net Change Theorem.

Part 2 of the Fundamental Theorem says that if f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f. This means that $F^{\prime}=f$, so the equation can be rewritten as

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

We know that $F^{\prime}(x)$ represents the rate of change of $y=F(x)$ with respect to x and $F(b)-F(a)$ is the change in y when x changes from a to b. [Note that could, for instance, increase, then decrease, then increase again. Although y might change in both directions, $F(b)-F(a)$ represents the net change in y.] So we can reformulate FTC2 in words as follows.

Net Change Theorem The integral of the rate change is the net change

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

This principle can be applied to all of the rates of change in the natural and social sciences. Here are a few instances of this idea:

- If V is the volume of water in a reservoir at time t, then its derivative V^{\prime} is the rate at which water flows into the reservoir at time t. So

$$
\int_{t_{1}}^{t_{2}} V^{\prime}(t) d t=V\left(t_{1}\right)-V\left(t_{2}\right)
$$

is the change in the amount of water in the reservoir between time t_{1} and time t_{2}.

- If C is the concentration of the product of a chemical reaction at time T, then the rate of reaction is the derivative C^{\prime}. So

$$
\int_{t_{1}}^{t_{2}} C^{\prime}(t) d t=C\left(t_{1}\right)-C\left(t_{2}\right)
$$

is the change in the concentration of from time t_{1} to time t_{2}.

- If the mass of a rod measured from the left end to a point x is $m(x)$, then the linear density is $\rho(x)=m^{\prime}(x)$. So

$$
\int_{a}^{b} \rho(x) d x=m(b)-m(a)
$$

is the mass of the segment of the rod that lies between $x=a$ and $x=b$.

- If the rate of growth of a population is $\frac{d P}{d T}$, then

$$
\int_{t_{1}}^{t_{2}} P^{\prime}(t) d t=P\left(t_{1}\right)-P\left(t_{2}\right)
$$

is the net change in population during the time period from t_{1} to t_{2}. (The population increases when births happen and decreases when deaths occur. The net change takes into account both births and deaths.)

- If an object moves along a straight line with position function $s(t)$, then its velocity is $v(t)=s^{\prime}(t)$, so

$$
\text { displacement }=\int_{t_{1}}^{t_{2}} v(t) d t=s\left(t_{1}\right)-s\left(t_{2}\right)
$$

is the net change of position, or displacement, of the particle during the time period from t_{1} to t_{2}.

- If we want to calculate the distance the object travels during the time interval, we have to consider the intervals when $v(t) \geq 0$ (the particle moves to the right) and also the intervals when $v(t) \leq 0$ (the particle moves to the left). In both cases the distance is computed by integrating $|v(t)|$, the speed. Therefore

$$
\text { distance }=\int_{t_{1}}^{t_{2}}|v(t)| d t
$$

Example 2. A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-2 t-8$.

1. Find the displacement of the particle during the time period $1 \leq t \leq 6$.
2. Find the distance traveled during this time period.

Example 3. The linear density of a rod of length 4 m is given by $\rho(x)=9+2 \sqrt{x}$ measured in kg / m, where x is measured in meters from one end of the rod. Fina the total mass of the rod.

Example 4. Water flows from the bottom of a storage tank at a rate of $r(t)=200-4 t$ liters per minute, where $0 \leq t \leq 50$. Find the amount of water that flows from the tank during the first 10 minutes.

