Slopes and tangents to parametric curves

Suppose that the curve C is given by parametric equations $x=x(t), y=y(t)$, then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

Example 1. Find an equation of the tangentrto the curve $x(t)=t \sin t, y(t)=t \cos t$ at the point corresponding to $t=\pi$.

Tangent line: $\quad y-y(\pi)^{-\pi}=\frac{d y}{d x}(\pi)[x-x,(\pi)]$

$$
x(\pi)=\pi \sin \pi_{0}^{0}=0
$$

$y(\pi)=\pi \cos \pi^{-1}=-\pi$
slope of the tangent line $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{(t \cos t)^{\prime}}{(t \sin t)^{\prime}}$

$$
=\frac{t^{\prime} \cos t+t(\cos t)^{\prime}}{t^{\prime} \sin t+t(\sin t)^{\prime}}=\frac{\cos t-t \sin t}{\sin t+t \cos t}
$$

slope when $t=\pi$ is $\frac{d y}{d x}(\pi)=\frac{\cos \pi-\pi \sin \pi}{\sin \pi+\pi \cos \pi}=\frac{-1}{-\pi}=\frac{1}{\pi}$

$$
x=t^{4}-3 t, y=3 t^{3}-9
$$

Example 2. Find the points 0 the curve $x=t\left(t^{3}-3\right), y=3\left(t^{3}-3\right)$, where the tangent is vertical or horizontal.
slope $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\left(3 t^{3}-9\right)^{\prime}}{\left(t^{4}-3 t\right)^{\prime}}=\frac{9 t^{2}}{4 t^{3}-3}$

$$
\begin{array}{r}
\text { horizontal tangent } \Rightarrow \text { slope }=0 \quad \frac{9 t^{2}}{4 t^{3}-3}=0 \text { or } 9 t^{2}=0 \\
t=0
\end{array}
$$

point on the curve $(x(0), y(0))=\begin{array}{r}(0,-9) \text {-horizontal } \\ \text { tangent }\end{array}$
Vertical tangent
$x^{\prime}(t)=0$
point on the curve: $x\left(\sqrt[3]{\frac{3}{4}}\right)=\sqrt[3]{\frac{3}{4}}\left(\left(\sqrt[3]{\frac{3}{4}}\right)^{3}-3\right)=\sqrt[3]{\frac{3}{4}}\left(-\frac{9}{4}\right)$

$$
\begin{gathered}
y\left(\sqrt[3]{\frac{3}{4}}\right)=3\left(\frac{3}{4}-3\right)=-\frac{27}{4} \\
\left(-\frac{9}{4}\left(\sqrt[3]{\frac{3}{4}}\right),-\frac{27}{4}\right) \text { vertical tangent }
\end{gathered}
$$

Example 3. At what points on the curve $x=t^{3}+4 t, y=6 t^{2}$ is the tangent parallel to the line with the equations $x=-7 t, y=12 t-5$?

$$
\text { line: } \begin{aligned}
x & =-7 t, y=12 t-5, \quad \text { slope }=-\frac{12}{7} \\
t & =-\frac{x}{7} \Rightarrow y=-\frac{12 x}{7}-5
\end{aligned}
$$

$$
\begin{aligned}
& x=t^{3}+4 t \\
& y=6 t^{2} \\
& \text { slope of a tangent line if } \frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\left(6 t^{2}\right)^{\prime}}{\left(t^{3}+4 t\right)^{\prime}}=\frac{12 t}{3 t^{2}+4}=-\frac{12}{7} \\
& \frac{t}{3 t^{2}+4}=-\frac{1}{7} \\
& 7 t=-3 t^{2}-4 \\
& 3 t^{2}+7 t+4=0 \\
& t=\frac{-7+\sqrt{7^{2}-4(4)(3)}}{6}=\frac{-7+1}{6}=-1 \begin{array}{l}
(x(-1), y(-11))=\left(\frac{(-5,6)}{}\right. \\
\left.\left(x\left(-\frac{4}{3}\right), y\left(-\frac{4}{3}\right)\right)=\left(-\frac{208}{27}\right) \frac{32}{3}\right) \\
t_{2}=\frac{-7-1}{6}=-\frac{8}{6}=-\frac{4}{3} \quad \begin{array}{l}
\left(-\frac{4}{3}\right)^{3}+4\left(-\frac{4}{3}\right)=\frac{-64}{27}-\frac{16}{3}=\frac{-208}{27} \\
6\left(\frac{16}{9}\right)=\frac{2(16)}{3}
\end{array}
\end{array},
\end{aligned}
$$

